Existence and non-existence results for fractional Kirchhoff Laplacian problems

被引:0
作者
Nemat Nyamoradi
Vincenzo Ambrosio
机构
[1] Razi University,Department of Mathematics, Faculty of Sciences
[2] Università Politecnica delle Marche,Dipartimento di Ingegneria Industriale e Scienze Matematiche
来源
Analysis and Mathematical Physics | 2021年 / 11卷
关键词
Fractional Laplacian; Kirchhoff-type problem; Nehari manifold; Fibering map; 35R11; 35A15; 35J60; 47G20; 35J20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the following fractional Kirchhoff-type problem: a+b(∬R2N|u(x)-u(y)|2|x-y|N+2sdxdy)θ-1(-Δ)su=|u|2s∗-2u+λf(x)|u|q-2u,inRN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left[ a+b\Big (\iint _{{\mathbb {R}}^{2N}} \frac{|u(x)-u(y)|^2}{|x-y|^{N+2s}}dx dy \Big )^{\theta -1}\right] (-\Delta )^s u= & {} |u|^{2^*_s- 2} u\\&\quad + \lambda f(x) |u|^{q-2}u, ~ in ~{\mathbb {R}}^N, \end{aligned}$$\end{document}where (-Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(- \Delta )^s$$\end{document} is the fractional Laplacian operator with 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< s < 1$$\end{document}, λ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \ge 0$$\end{document}, a≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \ge 0$$\end{document}, b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b> 0$$\end{document}, 1<q<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<q<2$$\end{document}, N>2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N>2s$$\end{document}, and 2s∗=2NN-2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^*_s= \frac{2 N}{N - 2s}$$\end{document} is fractional critical Sobolev exponent. When λ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =0$$\end{document}, under suitable values of the parameters θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}, a and b, we obtain a non-existence result and the existence of infinitely many nontrivial solutions for the above problem. Also, for suitable weight function f(x), using the Nehari manifold technique and the fibbing maps, we prove the existence of at least two positive solutions for a sufficiently small choice of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}.
引用
收藏
相关论文
共 85 条
[61]  
Mingqi X(undefined)undefined undefined undefined undefined-undefined
[62]  
Molica Bisci G(undefined)undefined undefined undefined undefined-undefined
[63]  
Tian G(undefined)undefined undefined undefined undefined-undefined
[64]  
Zhang B(undefined)undefined undefined undefined undefined-undefined
[65]  
Molica Bisci G(undefined)undefined undefined undefined undefined-undefined
[66]  
Vilasi L(undefined)undefined undefined undefined undefined-undefined
[67]  
Palatucci G(undefined)undefined undefined undefined undefined-undefined
[68]  
Pisante A(undefined)undefined undefined undefined undefined-undefined
[69]  
Pucci P(undefined)undefined undefined undefined undefined-undefined
[70]  
Saldi S(undefined)undefined undefined undefined undefined-undefined