Existence and non-existence results for fractional Kirchhoff Laplacian problems

被引:0
作者
Nemat Nyamoradi
Vincenzo Ambrosio
机构
[1] Razi University,Department of Mathematics, Faculty of Sciences
[2] Università Politecnica delle Marche,Dipartimento di Ingegneria Industriale e Scienze Matematiche
来源
Analysis and Mathematical Physics | 2021年 / 11卷
关键词
Fractional Laplacian; Kirchhoff-type problem; Nehari manifold; Fibering map; 35R11; 35A15; 35J60; 47G20; 35J20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the following fractional Kirchhoff-type problem: a+b(∬R2N|u(x)-u(y)|2|x-y|N+2sdxdy)θ-1(-Δ)su=|u|2s∗-2u+λf(x)|u|q-2u,inRN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left[ a+b\Big (\iint _{{\mathbb {R}}^{2N}} \frac{|u(x)-u(y)|^2}{|x-y|^{N+2s}}dx dy \Big )^{\theta -1}\right] (-\Delta )^s u= & {} |u|^{2^*_s- 2} u\\&\quad + \lambda f(x) |u|^{q-2}u, ~ in ~{\mathbb {R}}^N, \end{aligned}$$\end{document}where (-Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(- \Delta )^s$$\end{document} is the fractional Laplacian operator with 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< s < 1$$\end{document}, λ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \ge 0$$\end{document}, a≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \ge 0$$\end{document}, b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b> 0$$\end{document}, 1<q<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<q<2$$\end{document}, N>2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N>2s$$\end{document}, and 2s∗=2NN-2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^*_s= \frac{2 N}{N - 2s}$$\end{document} is fractional critical Sobolev exponent. When λ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =0$$\end{document}, under suitable values of the parameters θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}, a and b, we obtain a non-existence result and the existence of infinitely many nontrivial solutions for the above problem. Also, for suitable weight function f(x), using the Nehari manifold technique and the fibbing maps, we prove the existence of at least two positive solutions for a sufficiently small choice of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}.
引用
收藏
相关论文
共 85 条
[11]  
Barrios B(2018)The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions Elect. J. Differ. Equ. 2018 1-892
[12]  
Medina M(2004)Fractional elliptic problems with two critical Sobolev–Hardy exponents J. Math. Anal. Appl. 295 225-573
[13]  
Peral I(2015)Best constants for Sobolev inequalities for higher order fractional derivatives Anal. PDE 8 1165-726
[14]  
Bianchi G(2014)Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum J. Differ. Equ. 256 858-353
[15]  
Chabrowski J(2012)Concentrating standing waves for the fractional nonlinear Schrödinger equation Bull. Sci. Math. 136 521-690
[16]  
Szulkin A(1997)Hitchhiker’s guide to the fractional Sobolev spaces Proc. R. Soc. Edinburgh Sect. A 127 703-1262
[17]  
Brown KJ(1974)Positive solutions for the p-Laplacian: application of the fibering method J. Math. Anal. Appl. 17 324-599
[18]  
Zhang Y(2013)On the variational principle J. Funct. Anal. 264 661-378
[19]  
Caffarelli L(2012)Nonexistence of distributional supersolutions of a semilinear elliptic equation with Hardy potential Proc. R. Soc. Edinburgh Sect. A 142 1237-170
[20]  
Silvestre L(2016)Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian Adv. Differ. Equat. 21 571-706