Existence and non-existence results for fractional Kirchhoff Laplacian problems

被引:0
作者
Nemat Nyamoradi
Vincenzo Ambrosio
机构
[1] Razi University,Department of Mathematics, Faculty of Sciences
[2] Università Politecnica delle Marche,Dipartimento di Ingegneria Industriale e Scienze Matematiche
来源
Analysis and Mathematical Physics | 2021年 / 11卷
关键词
Fractional Laplacian; Kirchhoff-type problem; Nehari manifold; Fibering map; 35R11; 35A15; 35J60; 47G20; 35J20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the following fractional Kirchhoff-type problem: a+b(∬R2N|u(x)-u(y)|2|x-y|N+2sdxdy)θ-1(-Δ)su=|u|2s∗-2u+λf(x)|u|q-2u,inRN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left[ a+b\Big (\iint _{{\mathbb {R}}^{2N}} \frac{|u(x)-u(y)|^2}{|x-y|^{N+2s}}dx dy \Big )^{\theta -1}\right] (-\Delta )^s u= & {} |u|^{2^*_s- 2} u\\&\quad + \lambda f(x) |u|^{q-2}u, ~ in ~{\mathbb {R}}^N, \end{aligned}$$\end{document}where (-Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(- \Delta )^s$$\end{document} is the fractional Laplacian operator with 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< s < 1$$\end{document}, λ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \ge 0$$\end{document}, a≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \ge 0$$\end{document}, b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b> 0$$\end{document}, 1<q<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<q<2$$\end{document}, N>2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N>2s$$\end{document}, and 2s∗=2NN-2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^*_s= \frac{2 N}{N - 2s}$$\end{document} is fractional critical Sobolev exponent. When λ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =0$$\end{document}, under suitable values of the parameters θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}, a and b, we obtain a non-existence result and the existence of infinitely many nontrivial solutions for the above problem. Also, for suitable weight function f(x), using the Nehari manifold technique and the fibbing maps, we prove the existence of at least two positive solutions for a sufficiently small choice of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}.
引用
收藏
相关论文
共 85 条
[1]  
Ambrosio V(2018)Multiple solutions for a class of nonhomogeneous fractional Schrödinger equations in J. Dyn. Differ. Equ. 30 1119-1143
[2]  
Hajaiej H(2018)Periodic solutions for critical fractional equations Calc. Var. Part. Differ. Equ. 57 45-645
[3]  
Ambrosio V(2019)Infinitely many solutions for fractional Kirchhoff–Sobolev–Hardy critical problems Electron. J. Qual. Theory Differ. Equ. 25 13-1350075
[4]  
Ambrosio V(2018)A multiplicity result for a fractional Kirchhoff equation in Commun. Contemp. Math. 20 1750054-59
[5]  
Fiscella A(2018) with a general nonlinearity Math. Methods Appl. Sci. 41 615-499
[6]  
Isernia T(2014)Concentration phenomena for a fractional Schrödinger-Kirchhoff type equation Commun. Contemp. Math. 16 1350046-1260
[7]  
Ambrosio V(1995)Some remarks on the solvability of non-local elliptic problems with the Hardy potential Nonlinear Anal. 25 41-1908
[8]  
Isernia T(2003)On symmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev exponent J. Differ. Equ. 193 481-12
[9]  
Ambrosio V(2007)The Nehari manifold for a semilinear elliptic problem with a sign changing weight function Comm. Partial Differ. Equ. 32 1245-236
[10]  
Isernia T(2011)An extension problem related to the fractional Laplacian J. Differ. Equ. 250 1876-1235