A note on shifted convolution of cusp-forms with θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-series

被引:0
作者
Xiaoguang He
Yujiao Jiang
机构
[1] Shandong University,Department of Mathematics
[2] Shandong University,School of Mathematics and Statistics
关键词
Shifted convolution sum; Cusp forms; Theta series; 11F30; 11F11; 11F27; 11F37;
D O I
10.1007/s11139-018-0018-7
中图分类号
学科分类号
摘要
In this paper, we study shifted convolution sums for GL(2) and give an upper bound for ∑n≥1λf(n+b)r(n,Q)g(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum \nolimits _{n\ge 1}\lambda _f(n+b) r(n,Q)g(n)$$\end{document}, where g(n) is a smooth weight function. In particular, we get an upper bound for ∑n≤xλf(n+b)r3(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum \nolimits _{n\le x}\lambda _f(n+b)r_3(n)$$\end{document}, which improves the result in Lü et al. (Ramanujan J 40(1):C115–C133, 2016).
引用
收藏
页码:1 / 19
页数:18
相关论文
共 16 条
  • [1] Bateman PT(1951)On the representations of a number as the sum of three squares Trans. Am. Math. Soc. 71 70-101
  • [2] Deligne P(1974)La conjecture de Weil. I Inst. Hautes Études Sci. Publ. Math. 43 273-307
  • [3] Duke W(2001)Bounds for automorphic III. Invent. Math. 143 221-248
  • [4] Friedlander BJ(2003)-functions Math. Ann. 326 347-365
  • [5] Iwaniec H(2003)An additive problem in the Fourier coefficients of cusp forms J. Am. Math. Soc. 16 139-183
  • [6] Harcos G(2002)Functoriality for the exterior square of Duke Math. J. 114 123-191
  • [7] Kim HH(2013) and the symmetric fourth of Arch. Math. 100 255-265
  • [8] Kowalski E(2016)Rankin-Selberg Ramanujan J. 40 C115-C133
  • [9] Michel P(2011)-functions in the level aspect Abh. Math. Semin. Univ. Ham- bg. 81 45-53
  • [10] VanderKam J(2014)On averages of Fourier coeffcients of Maass cusp forms Acta Arith. 163 161-177