Low-density parity-check codes based on Galois fields

被引:0
作者
F. I. Ivanov
V. V. Zyablov
V. G. Potapov
机构
[1] Russian Academy of Sciences,Kharkevich Institute for Information Transmission Problems
来源
Journal of Communications Technology and Electronics | 2012年 / 57卷
关键词
LDPC Code; Multiplicative Group; Primitive Element; Random Code; Chinese Remainder Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
Methods for constructing a mapping of the elements of a multiplicative group of a Galois field onto a symmetric group of permutation matrices are proposed. A technique minimizing the order of the symmetric group is suggested. The results are used for constructing an ensemble of low-density parity-check codes. The obtained code constructions are tested on an iterative belief propagation (sum-product) decoding algorithm on transmission of a code word through a binary channel with an additive Gaussian white noise.
引用
收藏
页码:857 / 867
页数:10
相关论文
共 39 条
[1]  
Richardson T. J.(2001)Design of Capacity-Approaching Irregular Low-Density Parity Check Codes IEEE Trans. on Inform. Theory 47 619-637
[2]  
Shokrollahi M. A.(1999)On Generalized Low-Density Paritycheck Codes Based on Hamming Component Codes IEEE Commun. Lett. 3 248-250
[3]  
Urbanke R. L.(2003)A Class of Low-Density Parity-Check Codes Constructed Based on Reed-Solomon Codes with two Information Symbols IEEE Commun. Lett. 7 317-319
[4]  
Lentmaier M.(1981)A Recursive Approach to Low Complexity Codes IEEE Trans. Inform. Theory 27 533-547
[5]  
Zigangirov K. S.(2010)A Faster Algorithm for Computing the Girth of Planar and Bounded Genus Graphs ACM Trans. Algorithms (TALG) 7 1-16
[6]  
Djurdjevic I.(2004)Quasi-Cyclic Low-Density Parity-Check Codes From Circulant Permutation Matrices IEEE Trans. Inform. Theory 50 1788-1793
[7]  
Xu J.(1993)An Algebraic Approach to Constructing Convolutional Codes from Quasi-Cyclic Codes DIMACS Ser. Discr. Math. Theor. Comput. Sci. 14 188-198
[8]  
Abdel-Ghaffar K.(2002)Difference Triangle Sets From Affine Planes IEEE Trans. Inform. Theory 48 2399-2401
[9]  
Lin S.(2001)Low-Destiny Parity Check Codes Based on Finite Geometries: A Rediscovery and New Results IEEE Trans. Inform. Theory 47 2711-2736
[10]  
Tanner M.(2007)Quasi-Cyclic Low-Density Parity-Check Codes with Girth Larger than 12 IEEE Trans. Inf. Theory 53 2885-2891