Picard bundle on the moduli space of torsionfree sheaves

被引:0
|
作者
Usha N Bhosle
机构
[1] Tata Institute of Fundamental Research,
来源
Proceedings - Mathematical Sciences | 2020年 / 130卷
关键词
Nodal curve; moduli spaces; Picard bundles; stability; 14H60;
D O I
暂无
中图分类号
学科分类号
摘要
Let Y be an integral nodal projective curve of arithmetic genus g≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\ge 2$$\end{document} with m nodes defined over an algebraically closed field. Let n and d be mutually coprime integers with n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} and d>n(2g-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d > n(2g-2)$$\end{document}. Fix a line bundle L of degree d on Y. We prove that the Picard bundle EL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{E}_L$$\end{document} over the ‘fixed determinant moduli space’ UL(n,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_L(n,d)$$\end{document} is stable with respect to the polarisation θL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _L$$\end{document} and its restriction to the moduli space UL′(n,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U'_L(n,d)$$\end{document}, of vector bundles of rank n and determinant L, is stable with respect to any polarisation. There is an embedding of the compactified Jacobian J¯(Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{J}(Y)$$\end{document} in the moduli space UY(n,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_Y(n,d)$$\end{document} of rank n and degree d. We show that the restriction of the Picard bundle of rank ng (over UY(n,n(2g-1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_Y(n,n(2g-1))$$\end{document}) to J¯(Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{J}(Y)$$\end{document} is stable with respect to any theta divisor θJ¯(Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{{\bar{J}}(Y)}$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] O'Grady tenfolds as moduli spaces of sheaves
    Felisetti, Camilla
    Giovenzana, Franco
    Grossi, Annalisa
    FORUM OF MATHEMATICS SIGMA, 2024, 12
  • [22] Bundle gerbes and moduli spaces
    Bouwknegt, Peter
    Mathai, Varghese
    Wu, Siye
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (01) : 1 - 10
  • [23] Wall crossing for moduli of stable sheaves on an elliptic surface
    Yoshioka, Kota
    MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (01)
  • [24] Examples of smooth components of moduli spaces of stable sheaves
    Reede, Fabian
    Zhang, Ziyu
    MANUSCRIPTA MATHEMATICA, 2021, 165 (3-4) : 605 - 621
  • [25] Moduli spaces of framed flags of sheaves on the projective plane
    von Flach, Rodrigo A.
    Jardim, Marcos
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 118 : 138 - 168
  • [26] Moduli spaces of sheaves on K3 surfaces
    Sawon, Justin
    JOURNAL OF GEOMETRY AND PHYSICS, 2016, 109 : 68 - 82
  • [27] SLOPE-SEMISTABILITY AND MODULI OF COHERENT SHEAVES: A SURVEY
    Pavel, Mihai
    Toma, Matei
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2025, 70 (1-2): : 85 - 105
  • [28] The Picard group of the moduli of G-bundles on a curve
    Beauville, A
    Laszlo, Y
    Sorger, C
    COMPOSITIO MATHEMATICA, 1998, 112 (02) : 183 - 216
  • [29] Symplectic structures on moduli spaces of framed sheaves on surfaces
    Sala, Francesco
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (04): : 1455 - 1471
  • [30] Singularities of moduli spaces of sheaves on K3 surfaces and Nakajima quiver varieties
    Arbarello, E.
    Sacca, G.
    ADVANCES IN MATHEMATICS, 2018, 329 : 649 - 703