Picard bundle on the moduli space of torsionfree sheaves

被引:0
|
作者
Usha N Bhosle
机构
[1] Tata Institute of Fundamental Research,
来源
Proceedings - Mathematical Sciences | 2020年 / 130卷
关键词
Nodal curve; moduli spaces; Picard bundles; stability; 14H60;
D O I
暂无
中图分类号
学科分类号
摘要
Let Y be an integral nodal projective curve of arithmetic genus g≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\ge 2$$\end{document} with m nodes defined over an algebraically closed field. Let n and d be mutually coprime integers with n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} and d>n(2g-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d > n(2g-2)$$\end{document}. Fix a line bundle L of degree d on Y. We prove that the Picard bundle EL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{E}_L$$\end{document} over the ‘fixed determinant moduli space’ UL(n,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_L(n,d)$$\end{document} is stable with respect to the polarisation θL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _L$$\end{document} and its restriction to the moduli space UL′(n,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U'_L(n,d)$$\end{document}, of vector bundles of rank n and determinant L, is stable with respect to any polarisation. There is an embedding of the compactified Jacobian J¯(Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{J}(Y)$$\end{document} in the moduli space UY(n,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_Y(n,d)$$\end{document} of rank n and degree d. We show that the restriction of the Picard bundle of rank ng (over UY(n,n(2g-1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_Y(n,n(2g-1))$$\end{document}) to J¯(Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{J}(Y)$$\end{document} is stable with respect to any theta divisor θJ¯(Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{{\bar{J}}(Y)}$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Picard bundle on the moduli space of torsionfree sheaves
    Bhosle, Usha N.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2020, 130 (01):
  • [2] A note on the Picard bundle over a moduli space of vector bundles
    Biswas, I
    Brambila-Paz, L
    MATHEMATISCHE NACHRICHTEN, 2006, 279 (03) : 235 - 241
  • [3] Picard groups of the moduli spaces of semistable sheaves I
    Usha N. Bhosle
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2004, 114 : 107 - 122
  • [4] Picard groups of the moduli spaces of semistable sheaves I
    Bhosle, UN
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2004, 114 (02): : 107 - 122
  • [5] BRAUER GROUP AND BIRATIONAL TYPE OF MODULI SPACES OF TORSIONFREE SHEAVES ON A NODAL CURVE
    Bhosle, Usha N.
    Biswas, Indranil
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (04) : 1769 - 1784
  • [6] Moduli of torsionfree sheaves of rank two and odd degree on a nodal hyperelliptic curve
    Bhosle U.N.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2013, 54 (1): : 155 - 179
  • [7] Torsionfree sheaves over a nodal curve of arithmetic genus one
    Bhosle, Usha N.
    Biswas, Indranil
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2008, 118 (01): : 81 - 98
  • [8] Torsionfree sheaves over a nodal curve of arithmetic genus one
    Usha N. Bhosle
    Indranil Biswas
    Proceedings Mathematical Sciences, 2008, 118 : 81 - 98
  • [9] Moduli of sheaves
    Mestrano, Nicole
    Simpson, Carlos
    DEVELOPMENT OF MODULI THEORY - KYOTO 2013, 2016, 69 : 77 - 172
  • [10] Lagrangian Subspaces of the Moduli Space of Simple Sheaves on K3 Surfaces
    Fantechi, Barbara
    Miro-Roig, Rosa M.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2025, 22 (01)