Integral Cayley Graphs

被引:0
作者
W. Guo
D. V. Lytkina
V. D. Mazurov
D. O. Revin
机构
[1] University of Science and Technology of China,
[2] Siberian State University of Telecommunications and Information Sciences,undefined
[3] Novosibirsk State University,undefined
[4] Sobolev Institute of Mathematics,undefined
来源
Algebra and Logic | 2019年 / 58卷
关键词
Cayley graph; adjacency matrix of graph; spectrum of graph; integral graph; complex group algebra; character of group;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a group and S ⊆ G a subset such that S = S−1, where S−1 = {s−1 | s ∈ S}. Then a Cayley graph Cay(G, S) is an undirected graph Γ with vertex set V (Γ) = G and edge set E(Γ) = {(g, gs) | g ∈ G, s ∈ S}. For a normal subset S of a finite group G such that s ∈ S ⇒ sk ∈ S for every k ∈ ℤ which is coprime to the order of s, we prove that all eigenvalues of the adjacency matrix of Cay(G, S) are integers. Using this fact, we give affirmative answers to Questions 19.50(a) and 19.50(b) in the Kourovka Notebook.
引用
收藏
页码:297 / 305
页数:8
相关论文
共 5 条
[1]  
Diaconis P(1981)Generating a random permutation with random transpositions Z. Wahrscheinlichkeitstheor. Verw. Geb. 57 159-179
[2]  
Shahshahani M(2003)Spectrum of Cayley graphs on the symmetric group generated by transpositions J. Ramanujan Math. Soc. 18 33-52
[3]  
Murty MR(2012)undefined Lin. Alg. Appl. 437 1033-1039
[4]  
Krakovski R(undefined)undefined undefined undefined undefined-undefined
[5]  
Mohar B(undefined)undefined undefined undefined undefined-undefined