MEASURE EQUIVALENCE FOR NON-UNIMODULAR GROUPS

被引:0
作者
JUHANI KOIVISTO
DAVID KYED
SVEN RAUM
机构
[1] University of Southern Denmark,Department of Mathematics and Computer Science
[2] Stockholm University,Department of Mathematics
来源
Transformation Groups | 2021年 / 26卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We undertake a comprehensive study of measure equivalence between general locally compact, second countable groups, providing operator algebraic and ergodic theoretic reformulations, and complete the classification of amenable groups within this class up to measure equivalence.
引用
收藏
页码:327 / 346
页数:19
相关论文
共 42 条
  • [1] Bader U(2013). I Invent. Math. 194 313-379
  • [2] Furman A(2018). I Geom. Dedicata 196 1-9
  • [3] Sauer R(2018). II Groups Geom. Dyn. 12 399-448
  • [4] Bader U(2018) and Commun. Math. Phys. 361 81-125
  • [5] Rosendal C(1982) III Ergodic Theory Dynam. Systems 1 431-450
  • [6] Bowen L(1959)undefined Amer. J. Math. 81 119-159
  • [7] Hoff D(1978)undefined Adv. in Math. 28 186-230
  • [8] Ioana A(1977)undefined Trans. Amer. Math. Soc. 234 289-324
  • [9] Brothier A(1977)undefined Trans. Amer. Math. Soc. 234 325-359
  • [10] Deprez T(1974)undefined Adv. in Math. 14 271-308