共 4 条
A Refinement of the First Eigenvalue and Eigenfunction of the Linearized Moser-Trudinger Problem
被引:0
|作者:
Kefan Pan
Jing Yang
机构:
[1] Central China Normal University,School of Mathematics and Statistics
[2] Jiangsu University of Science and Technology,Jing Yang School of Science
来源:
Acta Applicandae Mathematicae
|
2023年
/
187卷
关键词:
The linearized Moser-Trudinger problem;
The first eigenvalue;
The first eigenfunction;
Asymptotic behavior;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We revisit the following Moser-Trudinger problem {−Δu=λueu2in Ω,u>0in Ω,u=0on ∂Ω,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \textstyle\begin{cases} -\Delta u=\lambda ue^{u^{2}} &\text{in } \Omega , \\ u>0&\text{in } \Omega , \\ u=0 &\text{on } \partial \Omega , \end{cases} $$\end{document} where Ω⊂R2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\Omega \subset \mathbb{R}^{2}$\end{document} is a smooth bounded domain and λ>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\lambda >0$\end{document} is sufficiently small. Qualitative analysis of peaked solutions for Moser-Trudinger type equation in R2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb{R}^{2}$\end{document} has been widely studied in recent decades. In this paper, we continue to consider the qualitative properties of the eigenvalues and eigenfunctions for the corresponding linearized Moser-Trudinger problem by using a variety of local Pohozaev identities combined with some elliptic theory in dimension two. Here we give some fine estimates for the first eigenvalue and eigenfunction of the linearized Moser-Trudinger problem. Since this problem is a critical exponent for dimension two and will lose compactness, we have to obtain some new and technical estimates.
引用
收藏
相关论文