A class of Einstein (α, β)-metrics

被引:0
作者
Xinyue Cheng
Zhongmin Shen
Yanfang Tian
机构
[1] Chongqing University of Technology,School of Mathematics and Statistics
[2] Indiana University-Purdue University at Indianapolis,Department of Mathematical Science
[3] Chongqing University of Technology,School of Mathematics and Statistics
[4] Logistical Engineering University of PLA,undefined
来源
Israel Journal of Mathematics | 2012年 / 192卷
关键词
Sectional Curvature; Ricci Curvature; Einstein Metrics; Riemann Curvature; Finsler Space;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a special class of Finsler metrics, called (α, β)-metrics, which are defined by F = αϕ(β/α), where α is a Riemannian metric and β is a 1-form. We show that if ϕ = ϕ(s) is a polynomial in s, it is Einstein if and only if it is Ricci-flat. We also determine the Ricci-flat (α, β)-metrics which are not of the type F = (α + ɛβ)2/α.
引用
收藏
页码:221 / 249
页数:28
相关论文
共 50 条
[41]   Non-naturally reductive Einstein metrics on normal homogeneous Einstein manifolds [J].
Yan, Zaili ;
Deng, Shaoqiang .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (08)
[42]   Kahler-Einstein metrics on Fano manifolds [J].
Tian, Gang .
JAPANESE JOURNAL OF MATHEMATICS, 2015, 10 (01) :1-41
[43]   Einstein metrics via intrinsic or parallel torsion [J].
Richard Cleyton ;
Andrew Swann .
Mathematische Zeitschrift, 2004, 247 :513-528
[44]   A REMARK ON CONICAL KAHLER-EINSTEIN METRICS [J].
Szekelyhidi, Gabor .
MATHEMATICAL RESEARCH LETTERS, 2013, 20 (03) :581-590
[45]   METRICS OF KAHLER-EINSTEIN ON THE FANO VARIETIES [J].
Eyssidieux, Philippe .
ASTERISQUE, 2016, (380) :207-229
[46]   Constructions of Einstein Finsler metrics by warped product [J].
Chen, Bin ;
Shen, Zhongmin ;
Zhao, Lili .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (11)
[47]   Families of conic Kahler-Einstein metrics [J].
Guenancia, Henri .
MATHEMATISCHE ANNALEN, 2020, 376 (1-2) :1-37
[48]   The Cauchy Problems for Einstein Metrics and Parallel Spinors [J].
Bernd Ammann ;
Andrei Moroianu ;
Sergiu Moroianu .
Communications in Mathematical Physics, 2013, 320 :173-198
[49]   Diagonalizing cohomogeneity-one Einstein metrics [J].
Dammerman, Brandon .
JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (09) :1271-1284
[50]   Conical Kahler-Einstein Metrics Revisited [J].
Li, Chi ;
Sun, Song .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 331 (03) :927-973