A class of Einstein (α, β)-metrics

被引:0
|
作者
Xinyue Cheng
Zhongmin Shen
Yanfang Tian
机构
[1] Chongqing University of Technology,School of Mathematics and Statistics
[2] Indiana University-Purdue University at Indianapolis,Department of Mathematical Science
[3] Chongqing University of Technology,School of Mathematics and Statistics
[4] Logistical Engineering University of PLA,undefined
来源
Israel Journal of Mathematics | 2012年 / 192卷
关键词
Sectional Curvature; Ricci Curvature; Einstein Metrics; Riemann Curvature; Finsler Space;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a special class of Finsler metrics, called (α, β)-metrics, which are defined by F = αϕ(β/α), where α is a Riemannian metric and β is a 1-form. We show that if ϕ = ϕ(s) is a polynomial in s, it is Einstein if and only if it is Ricci-flat. We also determine the Ricci-flat (α, β)-metrics which are not of the type F = (α + ɛβ)2/α.
引用
收藏
页码:221 / 249
页数:28
相关论文
共 50 条
  • [1] A class of Einstein (α, β)-metrics
    Cheng, Xinyue
    Shen, Zhongmin
    Tian, Yanfang
    ISRAEL JOURNAL OF MATHEMATICS, 2012, 192 (01) : 221 - 249
  • [2] On a class of Einstein Finsler metrics
    Shen, Zhongmin
    Yu, Changtao
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2014, 25 (04)
  • [3] A class of conformally Einstein metrics
    Kapadia, D
    Sparling, G
    CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (22) : 4765 - 4776
  • [4] Einstein metrics and Einstein-Randers metrics on a class of homogeneous manifolds
    Chen, Chao
    Chen, Zhiqi
    Hu, Yuwang
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (04)
  • [5] Einstein Riemannian metrics and Einstein-Randers metrics on a class of homogeneous manifolds
    Kang, Yifang
    Chen, Zhiqi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 107 : 86 - 91
  • [6] On a class of weakly Einstein Finsler metrics
    Shen, Zhongmin
    Yang, Guojun
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 199 (02) : 773 - 790
  • [7] On a class of weakly Einstein Finsler metrics
    Zhongmin Shen
    Guojun Yang
    Israel Journal of Mathematics, 2014, 199 : 773 - 790
  • [8] On a class of weakly weighted Einstein metrics
    Shen, Zhongmin
    Zhao, Runzhong
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2022, 33 (10N11)
  • [9] On a Class of Quasi-Einstein Finsler Metrics
    Hongmei Zhu
    The Journal of Geometric Analysis, 2022, 32
  • [10] On a class of Einstein-reversible Finsler metrics
    Yang, Guojun
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 60 : 80 - 103