Bounds on the Number of Maximal Subgroups of Finite Groups

被引:0
作者
Adolfo Ballester-Bolinches
Ramón Esteban-Romero
Paz Jiménez-Seral
机构
[1] Guangdong University of Education,Department of Mathematics
[2] Universitat de València,Departament de Matemàtiques
[3] Universidad de Zaragoza,Departamento de Matemáticas
来源
Results in Mathematics | 2023年 / 78卷
关键词
Finite group; maximal subgroup; probabilistic generation; primitive group; 20P05; 20E07; 20E28;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we obtain significant bounds for the number of maximal subgroups of a given index of a finite group. These results allow us to give new bounds for the number of random generators needed to generate a finite d-generated group with high probability.
引用
收藏
相关论文
共 18 条
  • [1] Baer R(1957)Classes of finite groups and their properties Ill. J. Math. 1 115-187
  • [2] Lubotzky A(2002)The expected number of random elements to generate a finite group J. Algebra 257 452-459
  • [3] Detomi E(2003)Crowns and factorization of the probabilistic zeta function of a finite group J. Algebra 265 651-668
  • [4] Lucchini A(1998)Finite groups that need more generators than any proper quotient J. Aust. Math. Soc. Ser. A 64 82-91
  • [5] Dalla Volta F(2001)On the probability of generating a minimal J. Aust. Math. Soc. 71 177-185
  • [6] Lucchini A(1998)-generated group Isr. J. Math. 106 177-188
  • [7] Dalla Volta F(1995)On complemented nonabelian chief factors of a finite group Arch. Math. (Basel) 64 273-276
  • [8] Lucchini A(1981)Generators and minimal normal subgroups Bull. Lond. Math. Soc. 13 1-22
  • [9] Morini F(1990)Finite permutation groups and finite simple groups Proc. Lond. Math. Soc. 60 89-122
  • [10] Jiménez-Seral P(1936)Composition factors from the group ring and Artin’s theorem on orders of simple groups Q. J. Math. 7 134-151