A conformally invariant metric on Riemann surfaces associated with integrable holomorphic quadratic differentials

被引:0
作者
Toshiyuki Sugawa
机构
[1] Hiroshima University,Department of Mathematics, Graduate School of Science
[2] Tohoku University,Graduate School of Information Sciences
来源
Mathematische Zeitschrift | 2010年 / 266卷
关键词
Quadratic differential; Petersson series; Bergman kernel; Primary 30F45; Secondary 30C40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we define a conformally invariant (pseudo-)metric on all Riemann surfaces in terms of integrable holomorphic quadratic differentials and analyze it. This metric is closely related to an extremal problem on the surface. As a result, we have a kind of reproducing formula for integrable quadratic differentials. Furthermore, we establish a new characterization of uniform thickness of hyperbolic Riemann surfaces in terms of invariant metrics.
引用
收藏
页码:645 / 664
页数:19
相关论文
共 16 条
  • [1] Chabauty M.C.(1950)Limites d’ensembles et géométrie des nombres Bull. Soc. Math. France 78 143-151
  • [2] Gardiner F.P.(2001)Comparing Poincaré densities Ann. Math. 154 245-267
  • [3] Lakic N.(1995)On holomorphic maps between Riemann surfaces which preserve J. Math. Kyoto Univ. 35 299-324
  • [4] Gotoh Y.(1989)Amenability, Poincaré series and quasiconformal maps Invent. Math. 97 95-127
  • [5] McMullen C.(1983)The Hahn metric on Riemann surfaces Kodai Math. J. 6 57-69
  • [6] Minda D.(1977)Characterization of Fuchsian groups whose integrable forms are bounded Ann. Math. 106 239-258
  • [7] Niebur D.(1996)On the analytic structure of certain infinite dimensional Teichmüller spaces Nagoya Math. J. 141 143-156
  • [8] Sheingorn M.(1979)Uniformly perfect sets and the Poincaré metric Arch. Math. 32 192-199
  • [9] Ohsawa T.(1984)Capacities and Bergman kernels for Riemann surfaces and Fuchsian groups J. Math. Soc. Jpn. 36 637-642
  • [10] Pommerenke C.(1998)Various domain constants related to uniform perfectness Complex Var. Theory Appl. 36 311-345