On the 2k-th power mean of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{{L'}} {L}(1,\chi ) $$\end{document} with the weight of Gauss sums

被引:0
作者
Dongmei Ren
Yuan Yi
机构
[1] Xi’an Jiaotong University,Research Center for Basic Science
关键词
Dirichlet L-function; Gauss sums; asymptotic formula; 11M20;
D O I
10.1007/s10587-009-0047-x
中图分类号
学科分类号
摘要
The main purpose of this paper is to study the hybrid mean value of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{{L'}} {L}(1,\chi ) $$\end{document} and Gauss sums by using the estimates for trigonometric sums as well as the analytic method. An asymptotic formula for the hybrid mean value \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sum\limits_{\chi \ne \chi _0 } {|\tau (\chi )||\frac{{L'}} {L}(1,\chi )|^{2k} } $$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{{L'}} {L} $$\end{document} and Gauss sums will be proved using analytic methods and estimates for trigonometric sums.
引用
收藏
页码:781 / 789
页数:8
相关论文
共 8 条
[1]  
Yuan Y.(2000)On the first power mean of Dirichlet L-functions with the weight of Gauss sums Journal of Systems Science and Mathematical Sciences 20 346-351
[2]  
Wenpeng Z.(2002)On the 2 Advances in Mathematics 31 517-526
[3]  
Yuan Y.(1992)-th Power mean of Dirichlet L-function with the weight of Gauss sums Science in China (Series A) 35 1173-1179
[4]  
Wenpeng Z.(2006)A new mean value formula of Dirichlet’s L-function Journal of Mathematical Analysis and Applications 320 562-577
[5]  
Wenpeng Z.(1935)On the mean value of Acta. Arith. 1 83-86
[6]  
Huaning L.(undefined)Über die Klassenzahl quadratischer Zahlkörper undefined undefined undefined-undefined
[7]  
Xiaobeng Z.(undefined)undefined undefined undefined undefined-undefined
[8]  
Siegel C. L.(undefined)undefined undefined undefined undefined-undefined