The function structure analysis theory based on the factor space and space fault tree

被引:0
作者
Tie-Jun Cui
Pei-Zhuang Wang
Sha-Sha Li
机构
[1] Liaoning Technical University,College of Safety Science and Engineering
[2] Key Laboratory of Mine Thermodynamic Disasters and Control of Ministry of Education,Tunnel & Underground Structure Engineering Center of Liaoning
[3] Dalian Jiaotong University,College of Intelligence Engineering and Mathematics
[4] Liaoning Technical University,undefined
来源
Cluster Computing | 2017年 / 20卷
关键词
Intelligent science; Factors space; Space fault tree; Function structure analysis; Logical reasoning;
D O I
暂无
中图分类号
学科分类号
摘要
In order to analyze system function structure, the system function structure analysis theory is put forward based on factor space theory. Factors space is more suitable for describing cognition process of intelligence science than the qualitative cartesian space. Based on factor logic, the justice system of the function structure analysis was built. It is proved that the system function logic structure is a minimal disjunctive normal form from the system function analysis. The relationship is discussed between the classification reasoning method of inward analysis of system structure in space fault tree (SFT) and the function structure analysis. The process of inward analysis of system function structure in SFT is realized by the function structure analysis theory. The original classification reasoning method is enhanced to the level of logic mathematics. The system function structures of both incomplete information and complete information are analyzed with the method respectively, and the minimal disjunctive normal forms obtained from the analyses are T=x1x4+x3x5+x1x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = x_{1}x_{4} + x_{3}x_{5} + x _{1}x_{2}$$\end{document} and T=x1x4+x3x5+x1x2x3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = x_{1}x_{4} + x_{3}x_{5} +x_{1}x_{2} x_{3}$$\end{document}. The findings indicate that there are some implicit relationships between A3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{3}$$\end{document} and A2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{2}$$\end{document} , A1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{1}$$\end{document}. They added the phase set to the background sets and converted uncertain problems to certain ones.
引用
收藏
页码:1387 / 1399
页数:12
相关论文
共 75 条
  • [1] Iwasaki T(1996)Robust performance analysis for systems with structured uncertainty Int. J. Robust Nonlinear Control 6 85-99
  • [2] Dang YZ(1998)A transfer expansion method for structural modeling in systems analysis Trans. Syst. Eng. 13 66-74
  • [3] Lu Z(1999)A theory of structural vulnerability Struct. Eng. 77 17-24
  • [4] Yu Y(2001)Vulnerability of 3D trusses Struct. Saf. 23 203-220
  • [5] Woodman NJ(2004)Structure identification in fuzzy system based on multi-resolution analysis J. Syst. Simul. 16 1630-1632
  • [6] Agarwal J(2008)Assessing model structure uncertainty through an analysis of system feedback and bayesian networks Ecol. Appl. 18 1070-1082
  • [7] Blockley DI(2016)Reliability analysis method on repairable system with standby structure based on goal oriented methodology Qual. Reliab. Eng. Int. 32 2505-2517
  • [8] Woodman NJ(2012)A new system structure analysis arithmetic with reachable effect factor Transa. Beijing Inst. Technol. 32 135-140
  • [9] Wang H(2012)System structural analysis of communication networks J. Beijing Univ. Posts Telecommun. 35 38-41
  • [10] Xiao J(2015)Graphical models for reliability, availability, maintainability, and safety assessment and risk analysis of systems of systems under uncertainty Insight 18 17-19