Numerical simulation of crack propagation in solid propellant with extrinsic cohesive zone model

被引:0
|
作者
Huiru Cui
机构
[1] Army Engineering University of PLA,College of Defense Engineering
来源
Meccanica | 2022年 / 57卷
关键词
Finite element method; Crack propagation; Cohesive zone model; Extrinsic; Solid propellant;
D O I
暂无
中图分类号
学科分类号
摘要
To further investigate the fracture properties of solid propellant, crack propagation simulation technique is proposed for mode I fracture problems in conjunction with extrinsic cohesive zone model (CZM). Viscoelastic constitutive model for solid propellant and extrinsic Park-Paulino-Roesler (PPR) model constructed to characterize the fracture process are introduced in detail for the computational fracture mechanics approach using finite element method. Topological operations are employed to update the finite element information when extrinsic cohesive elements which represent the new crack facets are inserted. Single edge-notched tension (SENT) and three-point bending test are analyzed to demonstrate the accuracy and effectiveness of the proposed computational framework. Computational results demonstrate that crack propagation simulation technique with extrinsic CZM can provide more accurate fracture response than intrinsic CZM with predefined crack path.
引用
收藏
页码:1617 / 1630
页数:13
相关论文
共 50 条
  • [1] Numerical simulation of crack propagation in solid propellant with extrinsic cohesive zone model
    Cui, Huiru
    MECCANICA, 2022, 57 (7) : 1617 - 1630
  • [2] Simulation of crack propagation in HTPB propellant using cohesive zone model
    Han, Bo
    Ju, Yutao
    Zhou, Changsheng
    ENGINEERING FAILURE ANALYSIS, 2012, 26 : 304 - 317
  • [3] Numerical simulation on the interface debonding in solid propellant under large deformation by a cohesive zone model
    Zhang, Mei
    Zhang, Jiangtao
    Zhai, Pengcheng
    Liu, Lisheng
    Shi, Huiji
    INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY, 2011, 42 (1-2): : 98 - 109
  • [4] Multiscale Numerical Simulation Based on Cohesive Zone Model and Experimental Verification of Coupling Compound Crack Propagation
    Sheng Y.
    Jia B.
    Wang R.
    Chen G.
    Cailiao Daobao/Materials Reports, 2022, 36 (04):
  • [5] Three-dimensional Numerical Simulations of Crack Propagation with Cohesive Zone Model
    Chen Shunxiang
    Zhang Zhichun
    Xia Wei
    ICCSIT 2010 - 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 2, 2010, : 141 - 145
  • [6] Simulation of crack propagation in asphalt concrete using an intrinsic cohesive zone model
    Song, Seong Hyeok
    Paulino, Glaucio H.
    Buttlar, William G.
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 2006, 132 (11): : 1215 - 1223
  • [7] Numerical implementation of a fatigue cohesive zone model and simulation of mode I crack propagation of adhesively bonded composites
    Mbacke, Mamadou Abdoul
    Bensaada, Rachid
    Raujol, Jonathan
    Lascoup, Bertrand
    Filiot, Astrid
    1ST VIRTUAL EUROPEAN CONFERENCE ON FRACTURE - VECF1, 2020, 28 : 1431 - 1437
  • [8] Numerical Simulation of Particle Debonding of HTPB Propellant by Cohesive Zone Models
    Zhao Jiuling
    THEORY AND PRACTICE OF ENERGETIC MATERIALS, VOL VIII, 2009, : 515 - 519
  • [9] Numerical Simulation of Fracture Propagation in Bedded Shale Based on Cohesive Zone Model
    Yan, Zhitao
    Wang, Qiang
    Liu, Haining
    Kang, Shouxing
    Zhang, Liping
    Sun, Haiyang
    2021 5TH INTERNATIONAL CONFERENCE ON VISION, IMAGE AND SIGNAL PROCESSING (ICVISP 2021), 2021, : 302 - 306
  • [10] Extrinsic cohesive zone modeling for interface crack growth: Numerical and experimental studies
    Saikia, P. J.
    Muthu, N.
    ENGINEERING FRACTURE MECHANICS, 2022, 266