Positive solutions of quasilinear elliptic inequalities on noncompact Riemannian manifolds

被引:0
作者
A. G. Losev
Yu. S. Fedorenko
机构
[1] Volgograd State University,
来源
Mathematical Notes | 2007年 / 81卷
关键词
quasilinear elliptic inequality; Riemannian manifold; theorem of Liouville type; Lipschitz function; quasisimilar manifold; Laplace-Beltrami operator;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the generalized solutions of the inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ - div(A(x,u,\nabla u)\nabla u) \geqslant F(x,u,\nabla u)u^q , q > 1,$$ \end{document} on noncompact Riemannian manifolds. We obtain sufficient conditions for the validity of Liouville’s theorem on the triviality of the positive solutions of the inequality under consideration. We also obtain sharp conditions for the existence of a positive solution of the inequality − Δu ≥ uq, q > 1, on spherically symmetric noncompact Riemannian manifolds.
引用
收藏
页码:778 / 787
页数:9
相关论文
共 12 条
[1]  
Gidas B.(1981)Global and local behavior of positive solutions of nonlinear elliptic equations Comm. Pure Appl. Math. 34 525-598
[2]  
Spruck J.(1999)Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds Bull. Amer. Math. Soc. 36 135-249
[3]  
Grigor’yan A.(1998)On some Liouville theorems on noncompact Riemannian manifolds Sibirsk. Mat. Zh. 39 87-93
[4]  
Losev A. G.(2001)Bounded solutions of the Schrödinger equation on Riemannian products Algebra Anal. 13 84-110
[5]  
Losev A. G.(1996)Denjoy-Alfors’s theorem for harmonic functions on Riemannian manifolds and external structure of minimal surfaces Comm. Anal. Geom. 4 547-587
[6]  
Mazepa E. A.(1998)The absence of global positive solutions of quasilinear elliptic inequalities Dokl. Ross. Akad. Nauk 359 456-460
[7]  
Miklyukov V. M.(2002)Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities Acta. Math. 189 79-142
[8]  
Tkachev V. G.(undefined)undefined undefined undefined undefined-undefined
[9]  
Mitidieri E.(undefined)undefined undefined undefined undefined-undefined
[10]  
Pokhozhaev S. I.(undefined)undefined undefined undefined undefined-undefined