Some properties of almost interval-preserving operators

被引:2
作者
Bouras K. [1 ]
Elbour A. [1 ]
机构
[1] Département de Mathématiques, Faculté polydisciplinaire, Université Abdelmalek Essaadi, B.P. 745, Larache
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2018年 / 67卷 / 1期
关键词
Almost Dunford-Pettis operators; Almost interval-preserving operator; Almost limited operator; Lattice homomorphism operator; Limited operator; Order weakly compact operator;
D O I
10.1007/s12215-016-0294-2
中图分类号
学科分类号
摘要
In this paper, we give some results concerning almost interval-preserving (resp. lattice homomorphism) operators between Banach lattices. Also, it is proved that if T: E→ F a lattice homomorphism and F is σ-Dedekind complete, then T is almost limited if and only if T′ carries weak∗ convergent sequences of F′ onto L-weakly compact subsets of E′. Some related results are also obtained. © 2016, Springer-Verlag Italia.
引用
收藏
页码:67 / 73
页数:6
相关论文
共 13 条
[1]  
Aliprantis C.D., Burkinshaw O., Positive operators, (2006)
[2]  
Aqzzouz B., Elbour A., Some characterizations of almost Dunford-Pettis operators and applications, Positivity, 15, pp. 369-380, (2011)
[3]  
Aqzzouz B., Elbour A., Wickstead A.W., Positive almost Dunford-Pettis operators and their duality, Positivity, 15, pp. 185-197, (2011)
[4]  
Bourgain J., Diestel J., Limited operators and strict cosingularity, Math. Nachr., 119, pp. 55-58, (1984)
[5]  
Chen J.X., Chen Z.L., Ji G.X., Almost limited sets in Banach lattices, J. Math. Anal. Appl., 412, pp. 547-553, (2014)
[6]  
Dodds P.G., o-weakly compact mappings of Riesz spaces, Trans. Am. Math. Soc., 214, pp. 389-402, (1975)
[7]  
Dodds P.G., Fremlin D.H., Compact operators on Banach lattices, Israel J. Math., 34, pp. 287-320, (1979)
[8]  
H'michane J., El Fahri K., On the domination of limited and ordre Dunford-Pettis operators, Ann. Math. Québec, 39, 2, pp. 169-176, (2015)
[9]  
Meyer-Nieberg P., Banach lattices, (1991)
[10]  
Wnuk W., A characterization of discrete Banach lattices with order continuous norms, Proc. Am. Math. Soc., 104, pp. 197-200, (1988)