Compact Alternating Direction Implicit Scheme for Integro-Differential Equations of Parabolic Type

被引:0
作者
Leijie Qiao
Da Xu
机构
[1] Hunan Normal University,Key Laboratory of High Performance Computing and Stochastic Information Processing (HPCSIP) (Ministry of Education of China), College of Mathematics and Computer Science
来源
Journal of Scientific Computing | 2018年 / 76卷
关键词
Parabolic integro-differential equation; Compact ADI scheme; Stability; Convergence;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a fast and efficient numerical method to solve a class of parabolic integro-differential equations with weakly singular kernels, compact difference approach for spatial discretization and alternating direction implicit method in time, combined with second-order fractional quadrature rule suggested by Lubich approximating the integral term. The L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} stability and convergence are derived. Two numerical examples with known exact solution are given to support the theoretical results.
引用
收藏
页码:565 / 582
页数:17
相关论文
共 52 条
[1]  
Pani AK(2010)ADI orthogonal spline collocation methods for parabolic partial integro-differential equations IMA J. Numer. Anal. 30 248-276
[2]  
Fairweather G(1967)Volterra integral equations in Banach space Trans. Am. Math. Soc. 126 131-179
[3]  
Fernandes RI(1982)An abstract parabolic Volterra integrodifferential equation SIAM J. Math. Anal. 13 81-105
[4]  
Friedman A(1986)Time discretization of an integro-differential equation of parabolic type SIAM J. Numer. Anal. 23 1052-1061
[5]  
Shinbrot M(1988)Finite element methods for parabolic and hyperbolic partial integro-differential equations Nonlinear Anal. 12 785-809
[6]  
Heard ML(1991)Ritz–Volterra projections to finite element spaces and applications to integrodifferential and related equations SIAM J. Numer. Anal. 2 1047-1070
[7]  
Sloan IH(1993)On the discretization in time for a parabolic integro-differential equation with a weakly singular kernel, I: smooth initial data Appl. Math. Comput. 58 1-27
[8]  
Thomee V(1992)Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel Math. Comput. 58 587-602
[9]  
Yanik EG(1998)Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin methods Math. Comput. 67 45-71
[10]  
Fairweather G(1988)A numerical method for a partial integro-differential equation SIAM J. Numer. Anal. 25 319-327