Role of Combined Use of Mycorrhizae Fungi and Plant Growth Promoting Rhizobacteria in the Tolerance of Quinoa Plants Under Salt Stress

被引:0
|
作者
Salma Toubali
Abdelilah Meddich
机构
[1] Cadi Ayyad University,Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech
[2] Cadi Ayyad University,URL
[3] Tunisian-Moroccan Laboratory (LMTM) of Plant Physiology and Biotechnologies and Climate Change LPBV2C,CNRST
来源
Gesunde Pflanzen | 2023年 / 75卷
关键词
PGPR bacteria; Arbuscular mycorrhizal fungi; Tolerance; Salinity; (; Willd).;
D O I
暂无
中图分类号
学科分类号
摘要
The main objective of this study was to evaluate the effect of biofertilizers based on plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) on the tolerance of quinoa, (var. Titikaka) Titicaca under non-saline and saline conditions (0, 200 and 400 mM NaCl). The two microbial symbiotes were applied individually and/or in combination in the greenhouse. Several morphological and physiological parameters were evaluated under normal and stress conditions. The high level of salinity (400 mM NaCl) had deleterious effects on the growth and physiology of quinoa compared to unstressed conditions (0 Mm NaCl). However, non-inoculated quinoa plants grown under 400 mM NaCl conditions showed a significant decrease in total dry biomass, leaf water potential, stomatal conductance, and chlorophyll fluorescence compared to unstressed control plants (0 Mm NaCl). Under 400 mM NaCl, co-inoculation with PGPR and AMF improved dry biomass, leaf water potential, stomatal conductance, and chlorophyll fluorescence by 930, 38, 266 and 7%, respectively compared to the stressed control (400 Mm NaCl). Thus, the biofertilizers used improved plant growth and physiology by activating the photosynthetic machinery under salt stress conditions. These findings suggest that the combination of PGPR and AMF could be used for the improvement of quinoa tolerance to salt stress.
引用
收藏
页码:1855 / 1869
页数:14
相关论文
共 50 条
  • [41] VEGETAL RESPONSE OF &ITAcacia decurrens&IT TO INOCULATION WITH PLANT GROWTH PROMOTING RHIZOBACTERIA UNDER SALT STRESS
    Sanchez, Diana B.
    Bonilla, Ruth R.
    TEMAS AGRARIOS, 2014, 19 (02): : 159 - 172
  • [42] Alleviation of Salt Stress in Pepper (Capsicum annum L.) Plants by Plant Growth-Promoting Rhizobacteria
    Hahm, Mi-Seon
    Son, Jin-Soo
    Hwang, Ye-Ji
    Kwon, Duk-Kee
    Ghim, Sa-Youl
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2017, 27 (10) : 1790 - 1797
  • [43] Plant Growth-promoting Rhizobacteria Mitigate Deleterious Effects of Salt Stress on Strawberry Plants (Fragaria xananassa)
    Karlidag, Huseyin
    Yildirim, Ertan
    Turan, Metin
    Pehluvan, Mucahit
    Donmez, Figen
    HORTSCIENCE, 2013, 48 (05) : 563 - 567
  • [44] Plant growth promoting rhizobacteria for improved water stress tolerance in wheat genotypes
    Mutumba, Filipe Adriano
    Zagal, Erick
    Gerding, Macarena
    Castillo-Rosales, Dalma
    Paulino, Leandro
    Schoebitz, Mauricio
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2018, 18 (04): : 1080 - 1096
  • [45] The effects of plant growth-promoting rhizobacteria on plants under temperature stress:A meta-analysis
    Zhang, Xiaofeng
    Yang, Zhandong
    Wang, Liu
    Yue, Yuanzheng
    Wang, Lianggui
    Yang, Xiulian
    RHIZOSPHERE, 2023, 28
  • [46] Plant Growth-Promoting Rhizobacteria-Mediated Adaptive Responses of Plants Under Salinity Stress
    Md. Najmol Hoque
    Afsana Hannan
    Shahin Imran
    Newton Chandra Paul
    Md. Fuad Mondal
    Md. Mahabubur Rahman Sadhin
    Jannatul Mawa Bristi
    Fariha Shahid Dola
    Md. Abu Hanif
    Wenxiu Ye
    Marian Brestic
    Mohammad Saidur Rhaman
    Journal of Plant Growth Regulation, 2023, 42 : 1307 - 1326
  • [47] Plant Growth-Promoting Rhizobacteria-Mediated Adaptive Responses of Plants Under Salinity Stress
    Hoque, Md Najmol
    Hannan, Afsana
    Imran, Shahin
    Paul, Newton Chandra
    Mondal, Md Fuad
    Sadhin, Md Mahabubur Rahman
    Bristi, Jannatul Mawa
    Dola, Fariha Shahid
    Abu Hanif, Md
    Ye, Wenxiu
    Brestic, Marian
    Rhaman, Mohammad Saidur
    JOURNAL OF PLANT GROWTH REGULATION, 2023, 42 (03) : 1307 - 1326
  • [48] Impact of grafting and different strains of plant growth promoting rhizobacteria on tomato plants grown hydroponically under combined drought and nutrient stress
    Kalozoumis, P.
    Ntatsi, G.
    Marakis, G.
    Simou, E.
    Tampakaki, A.
    Savvas, D.
    XXX INTERNATIONAL HORTICULTURAL CONGRESS, IHC 2018-II INTERNATIONAL SYMPOSIUM ON SOILLESS CULTURE AND VIII INTERNATIONAL SYMPOSIUM ON SEED, TRANSPLANT AND STAND ESTABLISHMENT OF HORTICULTURAL CROPS, 2020, 1273 : 153 - 159
  • [49] Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize
    Naseem, Hafsa
    Bano, Asghari
    JOURNAL OF PLANT INTERACTIONS, 2014, 9 (01) : 689 - 701
  • [50] EFFECT OF PLANT GROWTH PROMOTING RHIZOBACTERIA ON Zea mays DEVELOPMENT AND GROWTH UNDER HEAVY METAL AND SALT STRESS CONDITION
    Becze, Annamaria
    Vincze, Eva-Boglarka
    Varga, Hilda-Maria
    Gyongyver, Mara
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2021, 20 (04): : 547 - 557