Low-order control-oriented modeling of piezoelectric actuator using Huberian function with low threshold: pseudolinear and neural network models

被引:0
|
作者
Christophe Corbier
Hector Manuel Romero Ugalde
机构
[1] Université de Lyon,LASPI
[2] Université de Saint Etienne,LTSI
[3] Jean Monnet,undefined
[4] IUT de Roanne,undefined
[5] Université de Rennes 1,undefined
[6] INSERM,undefined
[7] U1099,undefined
来源
Nonlinear Dynamics | 2016年 / 85卷
关键词
Nonlinear system identification; Piezoelectric actuator; Vibration drilling control; Pseudolinear black box model; Neural network model; Huberian function;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a new methodology of nonlinear system identification using Huberian function. Pseudolinear and Neural network black box model families are applied to identify a piezoelectric actuator for suspensions and vibration assisted drilling. Huberian function, which is a mixture of L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} and L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document} norms with a threshold, is used to estimate a parameters vector in these model families. Pseudolinear black box model with reduced model order and balanced simplicity-accuracy neural network model families are proposed. Moreover, we show the interest to decrease the threshold in the Huberian function by providing efficient models for vibration drilling control. Experimental results are presented and discussed.
引用
收藏
页码:923 / 940
页数:17
相关论文
共 20 条
  • [1] Low-order control-oriented modeling of piezoelectric actuator using Huberian function with low threshold: pseudolinear and neural network models
    Corbier, Christophe
    Ugalde, Hector Manuel Romero
    NONLINEAR DYNAMICS, 2016, 85 (02) : 923 - 940
  • [2] Control-oriented low-order models for the transient analysis of a domestic electric oven in natural convective mode
    Lucchi, M.
    Lorenzini, M.
    APPLIED THERMAL ENGINEERING, 2019, 147 : 438 - 449
  • [3] A novel Local Correction-based (LC-b) approach for low-order control-oriented models
    Cotrufo, Nunzio
    Candanedo, Jose
    CLIMATE RESILIENT CITIES - ENERGY EFFICIENCY & RENEWABLES IN THE DIGITAL ERA (CISBAT 2019), 2019, 1343
  • [4] Modeling and control of piezoelectric actuator based on radial basis function neural network
    Fan J.-H.
    Ma L.
    Zhou P.
    Liu J.-B.
    Zhou K.-M.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2016, 33 (07): : 856 - 862
  • [5] Control-Oriented Low-Order Approximation and Reconstruction of Yaw-Excited Wind Turbine Wake Dynamics
    Chen, Zhenyu
    Lin, Zhongwei
    Zhang, Guangming
    Liu, Jizhen
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (12) : 8498 - 8508
  • [6] Identification of low-order models using Laguerre basis function expansions
    Manngard, Mikael
    Toivonen, Hannu T.
    IFAC PAPERSONLINE, 2018, 51 (15): : 72 - 77
  • [7] Stability of nonlinear control systems based on low-order block-oriented models
    Harris, KR
    Palazoglu, A
    PROCEEDINGS OF THE 1998 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1998, : 1899 - 1903
  • [8] SUBOPTIMAL CONTROL OF NUCLEAR-REACTORS USING LOW-ORDER MODELS
    SINHA, NK
    BEREZNAI, GT
    INTERNATIONAL JOURNAL OF CONTROL, 1973, 18 (02) : 305 - 319
  • [9] Low-Order Dominant Harmonic Estimation Using Adaptive Wavelet Neural Network
    Jain, Sachin K.
    Singh, S. N.
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2014, 61 (01) : 428 - 435
  • [10] Low-Order Spherical Harmonic HRTF Restoration Using a Neural Network Approach
    Tsui, Benjamin
    Smith, William A. P.
    Kearney, Gavin
    APPLIED SCIENCES-BASEL, 2020, 10 (17):