Nonsmooth spin densities for continuous Heisenberg spin chains

被引:1
作者
Demontis F. [1 ]
Vargiu F. [1 ]
van der Mee C. [1 ]
机构
[1] Dipartimento di Matematica e Informatica, Università di Cagliari, Viale Merello 92, Cagliari
关键词
Continuous Heisenberg spin chain equation; Jost solutions; Volterra integral equations;
D O I
10.1007/s11587-016-0268-x
中图分类号
学科分类号
摘要
In this article we derive the triangular integral representations of the Jost matrix solutions of the continuous Heisenberg spin chain equation, as proposed by Zakharov and Takhtajan, without making smoothness assumptions on the spin density. © 2016, Università degli Studi di Napoli Federico II"."
引用
收藏
页码:469 / 478
页数:9
相关论文
共 22 条
  • [1] Ablowitz M.J., Prinari B., Trubatch A.D., Discrete and Continuous Nonlinear Schrödinger Systems, (2004)
  • [2] Aharoni A., Introduction to the Theory of Ferromagnetism, Int. Series Monogr. Phys, (2001)
  • [3] Bader S.D., Parkin S.S.P., Spintronics, Annu. Rev. Condens. Matter Phys, 1, pp. 71-88, (2010)
  • [4] Berkov D., Miltat J., Spin-torque driven magnetization dynamics: micromagnetic modelling, J. Magn. Magn. Mat, 320, pp. 1238-1259, (2008)
  • [5] Bohr H., Almost Periodic Functions, (1947)
  • [6] De Angelis M., Renno P., Existence, uniqueness and a priori estimates for a nonlinear integro-differential equation, Ricerche di Matematica, 57, 1, pp. 95-109, (2008)
  • [7] Demontis F., Lombardo S., Sommacal M., van der Mee C., Vargiu F., Exact solutions of the Heisenberg ferromagnetic equation, (2015)
  • [8] Faddeev L.D., Takhtajan L.A., Hamiltonian Methods in the Theory of Solitons. Classics in Mathematics, (1987)
  • [9] Heisenberg W., Zur Theorie des Ferromagnetismus, Z. Phys, 49, pp. 619-636, (1928)
  • [10] Hoefer M.A., Silva T.J., Keller M.W., Theory for a dissipative droplet soliton excited by a spin torque nanocontact, Phys. Rev. B, 54432, 14, (2010)