On the stability and regularity of the multiplier ideals of monomial ideals

被引:0
作者
Zhongming Tang
Cheng Gong
机构
[1] Soochow (Suzhou) University,Department of Mathematics
来源
Indian Journal of Pure and Applied Mathematics | 2017年 / 48卷
关键词
Stability; Castelnuovo-Mumford regularity; multiplier ideals;
D O I
暂无
中图分类号
学科分类号
摘要
Let a ⊆ ℂ[x1, . . . , xd] be a monomial ideal and J (a) its multiplier ideal which is also a monomial ideal. It is proved that if a is strongly stable or squarefree strongly stable then so is J (a). Denote the maximal degree of minimal generators of a by d(a). When a is strongly stable or squarefree strongly stable, it is shown that the Castelnuovo-Mumford regularity of J (a) is less than or equal to d(a). As a corollary, one gets a vanishing result on the ideal sheaf]J(a)˜\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde {\mathcal{J}\left( a \right)}$$\end{document} on ℙd–1 associated to J (a) that Hi(ℙd–1;J(a)˜\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde {\mathcal{J}\left( a \right)}$$\end{document}(s–i)) = 0, for all i > 0 and s ≥ d(a).
引用
收藏
页码:167 / 176
页数:9
相关论文
共 15 条
[1]  
Aramova A.(1998)Squarefree lexsegment ideals Math. Z. 228 353-378
[2]  
Herzog J.(1990)Minimal resolutions of some monomial ideals J. Algebra 129 1-25
[3]  
Hibi T.(2015)A note on the multiplier ideals of monomial ideals Czech. Math. J. 65 905-913
[4]  
Eliahou S.(2001)Multiplier ideals of monomial ideals Trans. Amer. Math. Soc. 353 2665-2671
[5]  
Kervaire M.(2003)A generalization of tight closure and multiplier ideals Trans. Amer. Math. Soc. 355 3143-3174
[6]  
Gong C.(1993)Adjoints and polars of simple complete ideals in two-dimensional regular local rings Bull. Soc. Math. Belg. Ser. A 45 223-244
[7]  
Tang Z.(1990)Multiplier ideal sheaves and existence of Kähler-Einstein metrics of positive scalar curvature Ann. of Math. 132 549-596
[8]  
Howald J. A.(2005)Multiplier ideal sheaves in complex and algebraic geometry Sci. China Math. 48 1-31
[9]  
Hara N.(2016)On the regularity of operations of ideals Comm. Algebra 44 2938-2944
[10]  
Yoshida K.(undefined)undefined undefined undefined undefined-undefined