Periodic BVP for integer/fractional order nonlinear differential equations with non-instantaneous impulses

被引:42
作者
Wang J. [1 ]
Li X. [1 ]
机构
[1] School of Mathematics and Computer Science, Guizhou Normal College
基金
中国国家自然科学基金;
关键词
Integer/fractional order; Non-instantaneous impulses; Nonlinear differential equations; Periodic BVP;
D O I
10.1007/s12190-013-0751-4
中图分类号
O172 [微积分];
学科分类号
摘要
In this paper, we investigate periodic BVP for integer/fractional order nonlinear differential equations with non-instantaneous impulses. Several new existence results are obtained under different conditions via fixed point methods. Finally, two examples are given to illustrate our main results. © 2014 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:321 / 334
页数:13
相关论文
共 16 条
[1]  
Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, (2006)
[2]  
Hernandez E., O'Regan D., On a new class of abstract impulsive differential equations, Proc. Am. Math. Soc., 141, pp. 1641-1649, (2013)
[3]  
Pierri M., O'Regan D., Rolnik V., Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses, Appl. Math. Comput., 219, pp. 6743-6749, (2013)
[4]  
Samoilenko A.M., Perestyuk N.A., Impulsive Differential Equations, (1995)
[5]  
Bainov D.D., Lakshmikantham V., Simeonov P.S., Theory of Impulsive Differential Equations, (1989)
[6]  
Benchohra M., Henderson J., Ntouyas S., Impulsive Differential Equations and Inclusions, (2006)
[7]  
Liu J., Nonlinear impulsive evolution equations, Dyn. Contin. Discrete Impuls. Syst., 6, pp. 77-85, (1999)
[8]  
Ahmed N.U., Existence of optimal controls for a general class of impulsive systems on Banach space, SIAM J. Control Optim., 42, pp. 669-685, (2003)
[9]  
Sattayatham P., Strongly nonlinear impulsive evolution equations and optimal control, Nonlinear Anal., 57, pp. 1005-1020, (2004)
[10]  
Chang Y.-K., Li W.T., Existence results for second order impulsive functional differential inclusions, J. Math. Anal. Appl., 301, pp. 477-490, (2005)