The obstacle problem for conformal metrics on compact Riemannian manifolds

被引:0
作者
Sijia Bao
Yuming Xing
机构
[1] Harbin Institute of Technology,Department of Mathematics
来源
Journal of Inequalities and Applications | / 2018卷
关键词
Obstacle problem; A priori estimates; Hessian equations; Viscosity solutions; Riemannian manifolds;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a priori estimates up to their second order derivatives for solutions to the obstacle problem of curvature equations on Riemannian manifolds (Mn,g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(M^{n}, g)$\end{document} arising from conformal deformation. With the a priori estimates the existence of a C1,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C^{1,1} $\end{document} solution to the obstacle problem with Dirichlet boundary value is obtained by approximation.
引用
收藏
相关论文
共 39 条
[31]  
Oberman A.(undefined)undefined undefined undefined undefined-undefined
[32]  
Oberman A.(undefined)undefined undefined undefined undefined-undefined
[33]  
Silvestre L.(undefined)undefined undefined undefined undefined-undefined
[34]  
Savin O.(undefined)undefined undefined undefined undefined-undefined
[35]  
Schoen R.(undefined)undefined undefined undefined undefined-undefined
[36]  
Trudinger N.S.(undefined)undefined undefined undefined undefined-undefined
[37]  
Viaclovsky J.A.(undefined)undefined undefined undefined undefined-undefined
[38]  
Xiong J.-G.(undefined)undefined undefined undefined undefined-undefined
[39]  
Bao J.-G.(undefined)undefined undefined undefined undefined-undefined