Stable one-dimensional quasi-periodic cocycles on unitary group

被引:0
作者
Xuanji Hou
机构
[1] Nanjing University,Department of Astronomy
来源
Frontiers of Mathematics in China | 2009年 / 4卷
关键词
Cocycle; stable; reducible; 37C15; 37C05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the stable one-dimensional quasi-periodic C∞ cocycles on U(N). We prove that any such cocycle on a generic irrational rotation is a limit point of reducible cocycles. The proof is based on Krikorian’s renormalization scheme and a local result of him.
引用
收藏
页码:651 / 658
页数:7
相关论文
共 15 条
[1]  
Avila A.(2006)Reducibility or non-uniform hyperbolicity for quasiperiodic Schrödinger cocycles Annals of Mathematics 164 911-940
[2]  
Krikorian R.(1975)The one-dimensional Schrödinger equation with a quasiperiodic potential Funct Anal Appl 9 279-289
[3]  
Dinaburg E.(1992)Floquet solutions for the one-dimensional quasiperiodic Schrödinger equation Comm Math Phys 146 447-482
[4]  
Sinai Y.(2008)Full measure reducibility for generic one-parameter family of quasiperiodic linear systems J Dynam Differential Equations 20 831-866
[5]  
Eliasson H.(2008)The rigidity of reducibility of cocycles on SO( Nonlinearity 21 2317-2330
[6]  
He H.(1962),ℝ) Amer Math Soc Transl 12 233-243
[7]  
You J.(1999)On inequalities between the upper bounds of the successive derivatives of arbitrary function on an infinite interval Ann scient Éc Norm Sup 32 187-240
[8]  
Hou H.(1999)Almost everywhere reducibility of quasi-periodic equations on compact groups Astérisque 259 1-214
[9]  
You J.(2001)Réductibilité des systèmes produits-croisés à valeurs dans des groupes compacts Annals of Mathematics 2 269-326
[10]  
Kolmogorov A.(1984)Global density of reducible quasi-periodic cocycles on Comment Math Helv 59 39-85