The Morse and Maslov indices for Schrödinger operators

被引:0
|
作者
Yuri Latushkin
Selim Sukhtaiev
Alim Sukhtayev
机构
[1] The University of Missouri,Department of Mathematics
[2] Rice University,Department of Mathematics
[3] Miami University,Department of Mathematics
来源
Journal d'Analyse Mathématique | 2018年 / 135卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the spectrum of Schrödinger operators with matrixvalued potentials, utilizing tools from infinite-dimensional symplectic geometry. Using the spaces of abstract boundary values, we derive relations between the Morse and Maslov indices for a family of operators on a Hilbert space obtained by perturbing a given self-adjoint operator by a smooth family of bounded self-adjoint operators. The abstract results are applied to the Schrödinger operators with θ-periodic, Dirichlet, and Neumann boundary conditions. In particular, we derive an analogue of the Morse-Smale Index Theorem for multi-dimensional Schrödinger operators with periodic potentials. For quasi-convex domains in Rn, we recast the results, connecting the Morse and Maslov indices using the Dirichlet and Neumann traces on the boundary of the domain.
引用
收藏
页码:345 / 387
页数:42
相关论文
共 50 条
  • [1] The Morse and Maslov indices for Schrodinger operators
    Latushkin, Yuri
    Sukhtaiev, Selim
    Sukhtayev, Alim
    JOURNAL D ANALYSE MATHEMATIQUE, 2018, 135 (01): : 345 - 387
  • [2] On the finiteness of the Morse index for Schrödinger operators
    Baptiste Devyver
    Manuscripta Mathematica, 2012, 139 : 249 - 271
  • [3] The Maslov and Morse Indices for System Schrodinger Operators on R
    Howard, Peter
    Latushkin, Yuri
    Sukhtayev, Alim
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2018, 67 (05) : 1765 - 1815
  • [4] The Maslov and Morse indices for Schrodinger operators on [0,1]
    Howard, P.
    Sukhtayev, A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (05) : 4499 - 4549
  • [5] Deficiency Indices for Singular Magnetic Schrödinger Operators
    Correggi, Michele
    Fermi, Davide
    MILAN JOURNAL OF MATHEMATICS, 2024, 92 (01) : 25 - 39
  • [6] Deficiency Indices for Singular Magnetic Schrödinger Operators
    Michele Correggi
    Davide Fermi
    Milan Journal of Mathematics, 2024, 92 : 25 - 39
  • [7] THE MORSE AND MASLOV INDICES FOR MULTIDIMENSIONAL SCHRODINGER OPERATORS WITH MATRIX-VALUED POTENTIALS
    Cox, Graham
    Jones, Christopher K. R. T.
    Latushkin, Yuri
    Sukhtayev, Alim
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (11) : 8145 - 8207
  • [8] Dunkl–Schrödinger Operators
    Béchir Amri
    Amel Hammi
    Complex Analysis and Operator Theory, 2019, 13 : 1033 - 1058
  • [9] Pseudomodes of Schrödinger operators
    Krejcirik, David
    Siegl, Petr
    FRONTIERS IN PHYSICS, 2024, 12
  • [10] Jacobi fields in optimal control: Morse and Maslov indices
    Agrachev, Andrei
    Beschastnyi, Ivan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 214