Isolation of a triplet benzene dianion

被引:0
作者
Colin A. Gould
Jonathan Marbey
Veacheslav Vieru
David A. Marchiori
R. David Britt
Liviu F. Chibotaru
Stephen Hill
Jeffrey R. Long
机构
[1] University of California,Department of Chemistry
[2] Florida State University,National High Magnetic Field Laboratory
[3] Florida State University,Department of Physics
[4] Theory of Nanomaterials Group,Department of Chemistry
[5] Katholieke Universiteit Leuven,Department of Chemical and Biomolecular Engineering
[6] University of California,Materials Sciences Division
[7] University of California,Maastricht Science Programme, Faculty of Science and Engineering
[8] Lawrence Berkeley National Laboratory,undefined
[9] Maastricht University,undefined
来源
Nature Chemistry | 2021年 / 13卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Baird’s rule predicts that molecules with 4nπ electrons should be aromatic in the triplet state, but the realization of simple ring systems with such an electronic ground state has been stymied by these molecules’ tendency to distort into structures bearing a large singlet–triplet gap. Here, we show that the elusive benzene diradical dianion can be stabilized through creation of a binucleating ligand that enforces a tightly constrained inverse sandwich structure and direct magnetic exchange coupling. Specifically, we report the compounds [K(18-crown-6)(THF)2]2[M2(BzN6-Mes)] (M = Y, Gd; BzN6-Mes = 1,3,5-tris[2′,6′-(N-mesityl)dimethanamino-4′-tert-butylphenyl]benzene), which feature a trigonal ligand that binds one trivalent metal ion on each face of a central benzene dianion. Antiferromagnetic exchange in the Gd3+ compound preferentially stabilizes the triplet state such that it becomes the molecular ground state. Single-crystal X-ray diffraction data and nucleus-independent chemical shift calculations support aromaticity, in agreement with Baird’s rule.
引用
收藏
页码:1001 / 1005
页数:4
相关论文
共 100 条
[1]  
Dewar MJS(1971)Aromaticity and pericyclic reactions Angew. Chem. Int. Ed. 10 761-776
[2]  
Fallon KJ(2019)Exploiting excited-state aromaticity to design highly stable singlet fission materials J. Am. Chem. Soc. 141 13867-13876
[3]  
Randić M(2003)Aromaticity of polycyclic conjugated hydrocarbons Chem. Rev. 2003 3449-3605
[4]  
Hückel E(1931)Quantentheoretische Beiträge zum Benzolproblem. I. Die Elektronenkonfiguration des Benzols und verwandter Verbindungen Z. Phys. 70 204-286
[5]  
Breslow R(1967)Antiaromaticity of cyclopropenyl anions J. Am. Chem. Soc. 89 4383-4390
[6]  
Brown J(1964)Hückel molecular orbitals of Möbius-type conformations of annulenes Tetrahedron 5 1923-1928
[7]  
Gajewski JJ(2006)Topology in chemistry: designing Möbius molecules Chem. Rev. 106 4820-4842
[8]  
Heilbronner E(2008)Intrinsically chiral aromaticity. Rules incorporating linking number, twist, and writhe for higher-twist Möbius annulenes J. Am. Chem. Soc. 130 7613-7619
[9]  
Herges R(1972)Quantum organic photochemistry. II. Resonance and aromaticity in the lowest J. Am. Chem. Soc. 94 4941-4948
[10]  
Rappaport SM(2012)* state of cyclic hydrocarbons Nat. Chem. 4 969-971