The fixed points of branching Brownian motion

被引:0
作者
Xinxin Chen
Christophe Garban
Atul Shekhar
机构
[1] Beijing Normal University,School of Mathematical Sciences
[2] Université Claude Bernard Lyon 1,CNRS UMR 5208, Institut Camille Jordan
[3] Institut Universitaire de France (IUF),undefined
[4] Tata Institute of Fundamental Research-CAM,undefined
来源
Probability Theory and Related Fields | 2023年 / 185卷
关键词
Branching Brownian motion; Infinite particle system; Invariant measures; Decorated Poisson point process; 60G55; 60J80;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we characterize all the point processes θ=∑i∈Nδxi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta =\sum _{i\in {\mathbb {N}}} \delta _{x_i}$$\end{document} on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document} which are left invariant under branching Brownian motions with critical drift -2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\sqrt{2}$$\end{document}. Our characterization holds under the only assumption that θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} is locally finite and θ(R+)<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta ({\mathbb {R}}_+)<\infty $$\end{document} almost surely.
引用
收藏
页码:839 / 884
页数:45
相关论文
共 64 条
[1]  
Arguin L-P(2009)On the structure of quasi-stationary competing particle systems Ann. Probab. 37 1080-1113
[2]  
Aizenman M(2013)Branching Brownian motion seen from its tip Probab. Theory Relat. Fields 157 405-451
[3]  
Aïdékon E(2012)Poissonian statistics in the extremal process of branching Brownian motion Ann. Appl. Probab. 22 1693-1711
[4]  
Berestycki J(2013)The extremal process of branching Brownian motion Probab. Theory Relat. Fields 157 535-574
[5]  
Brunet É(2007)A dynamical characterization of Poisson–Dirichlet distributions Electron. Commun. Probab. 12 283-290
[6]  
Shi Z(2013)Convergence in law of the minimum of a branching random walk Ann. Probab. 41 1362-1426, 05
[7]  
Arguin L-P(1997)Invariant measures of critical spatial branching processes in high dimensions Ann. Probab. 25 56-70
[8]  
Bovier A(2018)Branching-stable point measures and processes Adv. Appl. Probab. 50 1294-1314
[9]  
Kistler N(2009)Statistics at the tip of a branching random walk and the delay of traveling waves EPL (Europhys. Lett.) 87 60010-631
[10]  
Arguin L-P(2011)A branching random walk seen from the tip J. Stat. Phys. 143 420-304