On Monomial Ideals and Their Socles

被引:0
作者
Geir Agnarsson
Neil Epstein
机构
[1] George Mason University,Department of Mathematical Sciences
来源
Order | 2020年 / 37卷
关键词
Poset; Upset; Downset; Polynomial ring; Monomial ideal; Socle; Duality; Artinian ideal; Gorenstein ideal; Type ; monomial ideal;
D O I
暂无
中图分类号
学科分类号
摘要
For a finite subset M ⊂ [x1,…, xd] of monomials, we describe how to constructively obtain a monomial ideal I⊆R=K[x1,…,xd]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$I\subseteq R = K[x_{1},\ldots ,x_{d}]$\end{document} such that the set of monomials in Soc(I) ∖ I is precisely M, or such that M¯⊆R/I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline {M}\subseteq R/I$\end{document} is a K-basis for the the socle of R/I. For a given M we obtain a natural class of monomials ideals I with this property. This is done by using solely the lattice structure of the monoid [x1,…, xd]. We then present some duality results by using anti-isomorphisms between upsets and downsets of the lattice (ℤd,≼)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$({\mathbb {Z}}^{d},\preceq )$\end{document}. Finally, we define and analyze zero-dimensional monomial ideals of R of type k, where type 1 are exactly the Artinian Gorenstein ideals, and describe the structure of such ideals that correspond to order-generic antichains in ℤd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb {Z}}^{d}$\end{document}.
引用
收藏
页码:341 / 369
页数:28
相关论文
共 9 条
[1]  
Agnarsson G(1997)The number of outside corners of monomial ideals J. Pure Appl. Algebra 117/118 3-21
[2]  
Agnarsson G(2000)Co-generators for algebras over fields and commutative applications Comm. Algebra 28 4071-4087
[3]  
Beintema MB(1993)A note on Artinian Gorenstein algebras defined by monomials Rocky Mountain J. Math. 23 1-3
[4]  
Bayer D(1998)Monomial resolutions Math. Res. Lett. 5 31-46
[5]  
Peeva I(2006)Rings that are almost Gorenstein Pacific J. Math. 225 85-102
[6]  
Sturmfels B(1986)Neighborhood systems for production sets with indivisibilities Econometrica 54 507-534
[7]  
Huneke C(undefined)undefined undefined undefined undefined-undefined
[8]  
Vraciu A(undefined)undefined undefined undefined undefined-undefined
[9]  
Scarf HE(undefined)undefined undefined undefined undefined-undefined