Oscillation theorems for second-order nonlinear neutral delay dynamic equations on time scales

被引:0
作者
Samir H. Saker
Donal O’regan
Ravi P. Agarwal
机构
[1] King Saud University,Department of Mathematics, College of Science
[2] National University of Ireland,Department of Mathematics
[3] Florida Institute of Technology,Department of Mathematical Sciences
来源
Acta Mathematica Sinica, English Series | 2008年 / 24卷
关键词
oscillation; neutral delay dynamic equation; generalized Riccati technique; time scales; 34B10; 39A10; 34K11; 34C10;
D O I
暂无
中图分类号
学科分类号
摘要
By employing the generalized Riccati transformation technique, we will establish some new oscillation criteria and study the asymptotic behavior of the nonoscillatory solutions of the second-order nonlinear neutral delay dynamic equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ [r(t)[y(t) + p(t)y(\tau (t))]^\Delta ]^\Delta + q(t)f(y(\delta (t))) = 0 $$\end{document}, on a time scale \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{T} $$\end{document}. The results improve some oscillation results for neutral delay dynamic equations and in the special case when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{T} $$\end{document} = ℝ our results cover and improve the oscillation results for second-order neutral delay differential equations established by Li and Liu [Canad. J. Math., 48 (1996), 871–886]. When \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{T} $$\end{document} = ℕ, our results cover and improve the oscillation results for second order neutral delay difference equations established by Li and Yeh [Comp. Math. Appl., 36 (1998), 123–132]. When \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{T} $$\end{document} =hℕ, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{T} $$\end{document} = {t: t = qk, k ∈ ℕ, q > 1}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{T} $$\end{document} = ℕ2 = {t2: t ∈ ℕ}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{T} $$\end{document} = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{T}_n $$\end{document} = {tn = Σk=1n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tfrac{1} {k} $$\end{document}, n ∈ ℕ0}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{T} $$\end{document} ={t2: t ∈ ℕ}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{T} $$\end{document} = {√n: n ∈ ℕ0} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{T} $$\end{document} ={\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt[3]{n} $$\end{document}: n ∈ ℕ0} our results are essentially new. Some examples illustrating our main results are given.
引用
收藏
页码:1409 / 1432
页数:23
相关论文
共 30 条
[1]  
Hilger S.(1990)Analysis on measure chains—a unified approach to continuous and discrete calculus Results Math. 18 18-56
[2]  
Spedding V.(2003)Taming Nature’s Numbers New Scientist. 19 28-31
[3]  
Agarwal R. P.(2004)Oscillation criteria for second-order nonlinear neutral delay dynamic equations J. Math. Anal. and Appl. 300 203-217
[4]  
O’Regan D.(2006)Oscillation of second-order nonlinear neutral delay dynamic equations on time scales J. Comp. Appl. Math. 187 123-141
[5]  
Saker S. H.(2006)Oscillation of second-order neutral delay and mixed-type dynamic equations on time scales Adv. Difference Eqns. 2006 1-9
[6]  
Saker S. H.(2006)Oscillation criteria for second-order nonlinear neutral variable delay dynamic equations Appl. Math. Comp. 178 321-331
[7]  
Şahiner Y.(2007)Oscillation results for second-order nonlinear neutral delay dynamic equations on time scales Appl. Analysis 86 1-17
[8]  
Wu H.(2007)Oscillation of second-order delay and neutral delay dynamic equations on time scales Dyn. Syst. & Appl. 16 345-360
[9]  
Wu R. K.(2004)Oscillation for neutral dynamic functional equations on time scales J. Diff. Eqns. Appl. 10 651-659
[10]  
Zhuang R. M.(2006)Oscillation of second-order neutral delay dynamic equations of Emden-Fowler type Dyn. Syst. & Appl. 15 629-644