Inequalities of Hlawka type for matrices

被引:0
作者
S. Wada
机构
[1] Department of Information and Computer Engineering,
[2] Kisarazu National College of Technology,undefined
[3] 2-11-1 Kiyomidai-Higashi,undefined
[4] Kisarazu,undefined
[5] Chiba,undefined
[6] 292-0041 Japan,undefined
来源
Archiv der Mathematik | 2001年 / 77卷
关键词
Complex Number; Trace Norm; Related Inequality;
D O I
暂无
中图分类号
学科分类号
摘要
A generalized Hlawka's inequality says that for any n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ (\geqq 2) $\end{document} complex numbers¶x1, x2, ..., xn,¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \sum_{i=1}^n\Bigg|x_i - \sum_{j=1}^{n}x_j\Bigg| \leqq \sum_{i=1}^{n}|x_i| + (n - 2)\Bigg|\sum_{j=1}^{n}x_j\Bigg|. $\end{document}¶¶ We generalize this inequality to the trace norm and the trace of an n x n matrix A as¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ ||A - {\rm Tr} A ||_1\ \leqq ||A||_1 + (n - 2)| {\rm Tr} A|. $\end{document}¶¶ We consider also the related inequalities for p-norms \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ (1 \leqq p \leqq \infty) $\end{document} on matrices.
引用
收藏
页码:415 / 422
页数:7
相关论文
empty
未找到相关数据