Generalized Symplectization of Vlasov Dynamics and Application to the Vlasov–Poisson System

被引:0
作者
Robert Axel Neiss
机构
[1] Universität zu Köln,Mathematisches Institut
来源
Archive for Rational Mechanics and Analysis | 2019年 / 231卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a Hamiltonian structure of the Vlasov–Poisson system, first mentioned by Fröhlich et al. (Commun Math Phys 288:1023–1058, 2009). To begin with, we give a formal guideline to derive a Hamiltonian on a subspace of complex-valued L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}^{2}}$$\end{document} integrable functions α on the one particle phase space RZ2d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{2d}_{{\bf Z}}}$$\end{document}; s.t. f=α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f={\left|{\alpha}\right|}^2}$$\end{document} is a solution of a collisionless Boltzmann equation. The only requirement is a sufficiently regular energy functional on a subspace of distribution functions f∈L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f \in \mathcal{L}^{1}}$$\end{document}. Secondly, we give a full well-posedness theory for the obtained system corresponding to Vlasov–Poisson in d≧3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d \geqq 3}$$\end{document} dimensions. Finally, we adapt the classical globality results (Lions and Perthame in Invent Math 105:415–430, 1991; Pfaffelmoser in J Differ Equ 95:281–303, 1992; Schaeffer in Commun Partial Differ Equ 16(8–9):1313–1335, 1991) for d = 3 to the generalized system.
引用
收藏
页码:115 / 151
页数:36
相关论文
共 11 条
[1]  
Fröhlich J.(2009)On the mean-field limit of bosons with Coulomb two-body interaction Commun. Math. Phys. 288 1023-1058
[2]  
Knowles A.(1991)Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system Invent. Math. 105 415-430
[3]  
Schwarz S.(1980)The Maxwell–Vlasov equations as a continuous Hamiltonian system Phys. Lett. A 80 383-386
[4]  
Lions P.-L.(1992)Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data J. Differ. Equ. 95 281-303
[5]  
Perthame B.(1991)Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions Commun. Partial Differ. Equ. 16 1313-1335
[6]  
Morrison P.(1991)Poisson bracket for the Vlasov equation on a symplectic leaf Phys. Lett. A 156 96-100
[7]  
Pfaffelmoser K.(undefined)undefined undefined undefined undefined-undefined
[8]  
Schaeffer J.(undefined)undefined undefined undefined undefined-undefined
[9]  
Ye H.(undefined)undefined undefined undefined undefined-undefined
[10]  
Morrison P.(undefined)undefined undefined undefined undefined-undefined