Priestley Style Duality for Distributive Meet-semilattices

被引:0
|
作者
Guram Bezhanishvili
Ramon Jansana
机构
[1] New Mexico State University,Department of Mathematical Sciences
[2] Universitat de Barcelona,Dept. Lògica, Història i Filosofia de la Ciència
来源
Studia Logica | 2011年 / 98卷
关键词
Distributive meet-semilattices; distributive lattices; duality theory;
D O I
暂无
中图分类号
学科分类号
摘要
We generalize Priestley duality for distributive lattices to a duality for distributive meet-semilattices. On the one hand, our generalized Priestley spaces are easier to work with than Celani’s DS-spaces, and are similar to Hansoul’s Priestley structures. On the other hand, our generalized Priestley morphisms are similar to Celani’s meet-relations and are more general than Hansoul’s morphisms. As a result, our duality extends Hansoul’s duality and is an improvement of Celani’s duality.
引用
收藏
页码:83 / 122
页数:39
相关论文
共 50 条
  • [1] Priestley Style Duality for Distributive Meet-semilattices
    Bezhanishvili, Guram
    Jansana, Ramon
    STUDIA LOGICA, 2011, 98 (1-2) : 83 - 122
  • [2] A TOPOLOGICAL DUALITY FOR MILDLY DISTRIBUTIVE MEET-SEMILATTICES
    Celani, Sergio A.
    Gonzalez, Luciano J.
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2018, 59 (02): : 265 - 284
  • [3] Level rings arising from meet-distributive meet-semilattices
    Herzog, J
    Hibi, T
    NAGOYA MATHEMATICAL JOURNAL, 2006, 181 : 29 - 39
  • [4] Hyperdeterminants on meet-semilattices
    Wang, Bangyan
    Hong, Shaofang
    Li, Mao
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (10): : 1899 - 1915
  • [5] Coloring of meet-semilattices
    Nimbhoxar, S. K.
    Wasadikar, M. P.
    Demeyer, Lisa
    ARS COMBINATORIA, 2007, 84 : 97 - 104
  • [6] A NOTE ON MEET-SEMILATTICES WITH PSEUDOCOMPLEMENTATIONS
    Mamedov, Oktay M.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2007, 27 (35): : 45 - 46
  • [7] Quasi-concave functions on meet-semilattices
    Kempner, Yulia
    Muchnik, Ilya
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (04) : 492 - 499
  • [8] REMARKS ON PRIESTLEY DUALITY FOR DISTRIBUTIVE LATTICES
    CIGNOLI, R
    LAFALCE, S
    PETROVICH, A
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1991, 8 (03): : 299 - 315
  • [9] Esakia Style Duality for Implicative Semilattices
    Bezhanishvili, Guram
    Jansana, Ramon
    APPLIED CATEGORICAL STRUCTURES, 2013, 21 (02) : 181 - 208
  • [10] Esakia Style Duality for Implicative Semilattices
    Guram Bezhanishvili
    Ramon Jansana
    Applied Categorical Structures, 2013, 21 : 181 - 208