Kähler Metrics on the Projective Bundle of a Holomorphic Finsler Vector Bundle

被引:0
作者
Kun Wang
Chun Ping Zhong
机构
[1] Xiamen University,School of Mathematical Sciences
来源
Acta Mathematica Sinica, English Series | 2020年 / 36卷
关键词
Finsler vector bundle; Kähler metric; scalar curvature; Ricci curvature; 32L20; 53C60;
D O I
暂无
中图分类号
学科分类号
摘要
Let (M,g) be a compact Kahler manifold and (E,F) be a holomorphic Finsler vector bundle of rank r ≥ 2over M. In this paper, we prove that there exists a Kähler metric Φ defined on the projective bundle P(E)of E, which comes naturally from g and F. Moreover, a necessary and sufficient condition for Φ having positive scalar curvature is obtained, and a sufficient condition for Φ having positive Ricci curvature is established.
引用
收藏
页码:1279 / 1291
页数:12
相关论文
共 7 条
[1]  
Aikou T(1991)On complex Finsler manifolds Rep. Fac. Sci. Kagoshima Univ. (Math., Phys. & Chem.) 24 9-25
[2]  
Cao J G(2003)Finsler geometry of projectivized vector bundles J. Math. Kyoto Univ. 43 369-410
[3]  
Wong P M(1975)Negative vector bundles and complex Finsler structures Nagoya Math. J. 57 153-166
[4]  
Kobayashi S(1996)Complex Finsler vector bundles Contemporary Mathematics 196 145-153
[5]  
Kobayashi S(2019)Holomorphic sectional curvature of complex Finsler manifolds J. Geom. Anal. 29 194-216
[6]  
Wan X(1974)On the curvature of compact Hermitian manifolds Invent. Math. 25 213-139
[7]  
Yau S T(undefined)undefined undefined undefined undefined-undefined