Structure of the actively translating plant 80S ribosome at 2.2 Å resolution

被引:0
作者
Julia Smirnova
Justus Loerke
Gunnar Kleinau
Andrea Schmidt
Jörg Bürger
Etienne H. Meyer
Thorsten Mielke
Patrick Scheerer
Ralph Bock
Christian M. T. Spahn
Reimo Zoschke
机构
[1] Charité—Universitätsmedizin Berlin,Institute of Medical Physics and Biophysics
[2] corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin,Institute of Medical Physics and Biophysics, Group Protein X
[3] Charité—Universitätsmedizin Berlin,ray Crystallography and Signal Transduction
[4] corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin,Microscopy and Cryo
[5] Max Planck Institute for Molecular Genetics,Electron Microscopy Service Group
[6] Max Planck Institute of Molecular Plant Physiology,Department III
[7] Martin-Luther-Universität Halle-Wittenberg,Institut für Pflanzenphysiologie
来源
Nature Plants | 2023年 / 9卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In plant cells, translation occurs in three compartments: the cytosol, the plastids and the mitochondria. While the structures of the (prokaryotic-type) ribosomes in plastids and mitochondria are well characterized, high-resolution structures of the eukaryotic 80S ribosomes in the cytosol have been lacking. Here the structure of translating tobacco (Nicotiana tabacum) 80S ribosomes was solved by cryo-electron microscopy with a global resolution of 2.2 Å. The ribosome structure includes two tRNAs, decoded mRNA and the nascent peptide chain, thus providing insights into the molecular underpinnings of the cytosolic translation process in plants. The map displays conserved and plant-specific rRNA modifications and the positions of numerous ionic cofactors, and it uncovers the role of monovalent ions in the decoding centre. The model of the plant 80S ribosome enables broad phylogenetic comparisons that reveal commonalities and differences in the ribosomes of plants and those of other eukaryotes, thus putting our knowledge about eukaryotic translation on a firmer footing.
引用
收藏
页码:987 / 1000
页数:13
相关论文
共 138 条
  • [31] Voorhees RM(2001)Multiparticle cryo-EM of ribosomes Science 292 912-3184
  • [32] Fernández IS(2020)The Sol Genomics Network (SGN)—from genotype to phenotype to breeding Nucleic Acids Res. 48 4104-85
  • [33] Scheres SHW(2021)The organization of cytoplasmic ribosomal protein genes in the Nucleic Acids Res. 49 1760-477
  • [34] Hegde RS(2021) genome RNA Biol. 18 5089-567
  • [35] Bhaskar V(2019)A reference genome for J. Exp. Bot. 70 684626-39
  • [36] Hopes T(2021) enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency Front. Plant Sci. 12 3171-1832
  • [37] Armache J-P(2009)Systematic review of plant ribosome heterogeneity and specialization EMBO J. 28 80-1265
  • [38] Cottilli P(2013)Recognition of cognate transfer RNA by the 30S ribosomal subunit Nature 497 472-126
  • [39] Budkevich T(2017)MRNA regions where 80S ribosomes pause during translation elongation in vivo interact with protein uS19, a component of the decoding site Nature 551 560-332
  • [40] Budkevich TV(2016)Profiling of RNA ribose methylation in Nat. Commun. 7 e2017714118-12