The Structure of Idempotent Translatable Quasigroups

被引:0
作者
Wieslaw A. Dudek
Robert A. R. Monzo
机构
[1] Wroclaw University of Science and Technology,Faculty of Pure and Applied Mathematics
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2020年 / 43卷
关键词
Quasigroup; Quadratical quasigroup; -translatability; 20M15; 20N02;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the main result that a groupoid of order n is an idempotent and k-translatable quasigroup if and only if its multiplication is given by x·y=(ax+by)(modn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\cdot y=(ax+by)(\mathrm{mod}\,n)$$\end{document}, where a+b=1(modn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a+b=1(\mathrm{mod}\,n)$$\end{document}, a+bk=0(modn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a+bk=0(\mathrm{mod}\,n)$$\end{document} and (k,n)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,n)=1$$\end{document}. We describe the structure of various types of idempotent k-translatable quasigroups, some of which are connected with affine geometry and combinatorial algebra, and their parastrophes. We prove that such parastrophes are also idempotent k-translatable quasigroups and determine when they are of the same type as the original quasigroup. In addition, we find several different necessary and sufficient conditions making a k-translatable quasigroup quadratical.
引用
收藏
页码:1603 / 1621
页数:18
相关论文
共 23 条
[1]  
Bennett FE(1983)On a class of Congr. Numer. 39 117-122
[2]  
Bennett FE(1989) orthogonal arrays and associated quasigroups Discrete Math. 77 29-50
[3]  
Bennet FE(1980)The spectra of a variety of quasigroups and related combinatorial designs J. Combin. Theory (A) 29 142-150
[4]  
Mendelsohn E(2015)Resolvable perfect cyclic designs Quasigroups Relat. Syst. 23 221-230
[5]  
Mendelsohn NS(1997)Quadratical quasigroups Quasigroups Relat. Syst. 4 9-13
[6]  
Dudek WA(2016)Parastrophes of quasigroups Quasigroups Relat. Syst. 24 205-218
[7]  
Dudek WA(2018)On the fine structure of quadratical quasigroups Open Math. 16 1266-1282
[8]  
Dudek WA(2005)Translatability and translatable semigroups Quasigroups Relat. Syst. 13 229-236
[9]  
Monzo RAR(2011)Affine regular dodecahedron in Algebra Univers. 66 317-330
[10]  
Dudek WA(1975)-quasigroups Algebra Univers. 5 191-196