A Review on the Role of Tunable Q-Factor Wavelet Transform in Fault Diagnosis of Rolling Element Bearings

被引:0
作者
A. Anwarsha
T. Narendiranath Babu
机构
[1] Vellore Institute of Technology,School of Mechanical Engineering
来源
Journal of Vibration Engineering & Technologies | 2022年 / 10卷
关键词
Fault diagnosis; Rolling element bearings; Signal processing; Dynamic modeling; Tunable Q-factor wavelet transform;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1793 / 1808
页数:15
相关论文
共 272 条
[11]  
Kumar A(2015)Feature extraction and recognition for rolling element bearing fault utilizing short-time fourier transform and non-negative matrix factorization Chin J Mech Eng (Engl Ed) 28 96-105
[12]  
Kumar R(2013)A review on empirical mode decomposition in fault diagnosis of rotating machinery Mech Syst Signal Process 35 108-126
[13]  
Shah DS(2020)A deep learning-based remaining useful life prediction approach for bearings IEEE/ASME Trans Mech 25 1243-1254
[14]  
Patel VN(2016)A new compound faults detection method for rolling bearings based on empirical wavelet transform and chaotic oscillator Chaos Sol Fract 89 8-19
[15]  
Gupta P(2021)Sparsity-guided multi-scale empirical wavelet transform and its application in fault diagnosis of rolling bearings J Braz Soc Mech Sci Eng 43 1-17
[16]  
Pradhan MK(2005)Fault diagnosis of rolling element bearings using basis pursuit Mech Syst Signal Process 19 341-356
[17]  
Hamadache M(2011)Wigner-Ville distribution based on cyclic spectral density and the application in rolling element bearings diagnosis Proc Inst Mech Eng C J Mech Eng Sci 225 2831-2847
[18]  
Jung JH(2002)Singularity analysis using continuous wavelet transform for bearing fault diagnosis Mech Syst Signal Process 16 1025-1041
[19]  
Park J(2002)Application of discrete wavelet transform for detection of ball bearing race faults Tribol Int 35 793-800
[20]  
Youn BD(2015)Detection of weak transient signals based on wavelet packet transform and manifold learning for rolling element bearing fault diagnosis Mech Syst Signal Process 54 259-276