A Review on the Role of Tunable Q-Factor Wavelet Transform in Fault Diagnosis of Rolling Element Bearings

被引:0
作者
A. Anwarsha
T. Narendiranath Babu
机构
[1] Vellore Institute of Technology,School of Mechanical Engineering
来源
Journal of Vibration Engineering & Technologies | 2022年 / 10卷
关键词
Fault diagnosis; Rolling element bearings; Signal processing; Dynamic modeling; Tunable Q-factor wavelet transform;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1793 / 1808
页数:15
相关论文
共 272 条
[1]  
Randall RB(2011)Rolling element bearing diagnostics—a tutorial Mech Syst Signal Process 25 485-520
[2]  
Antoni J(1998)An air crash due to fatigue failure of a ball bearing Eng Fail Anal 5 261-269
[3]  
Salam I(1999)Review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings Tribol Int 32 469-480
[4]  
Tauqir A(2016)A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings Tribol Int 96 289-306
[5]  
UlHaq A(2019)Role of signal processing, modeling and decision making in the diagnosis of rolling element bearing defect: a review J Nondestr Eval 38 1-29
[6]  
Khan AQ(2014)A review of dynamic modeling and fault identifications methods for rolling element bearing Proc Technol 14 447-456
[7]  
Tandon N(2017)Fault detection analysis in rolling element bearing: a review Materi Today: Proc 4 2085-2094
[8]  
Choudhury A(2019)A comprehensive review of artificial intelligence-based approaches for rolling element bearing PHM: shallow and deep learning JMST Adv 1 125-151
[9]  
Rai A(2015)A summary of fault modelling and predictive health monitoring of rolling element bearings Mech Syst Signal Process 60 252-272
[10]  
Upadhyay SH(2019)Review of condition monitoring of rolling element bearing using vibration analysis and other techniques J Vib Eng Technol 7 407-414