New boundary element formulas for the biharmonic equation

被引:1
作者
Youngmok Jeon
机构
[1] Ajou University,Department of Mathematics
来源
Advances in Computational Mathematics | 1998年 / 9卷
关键词
biharmonic equation; Dirichlet problem; fundamental solution; Galerkin method; Gårding's inequality; Gauss–Green theorem; plate bending; Rayleigh–Green formula; 31A10; 31A30; 31B10; 31B30; 35A08;
D O I
暂无
中图分类号
学科分类号
摘要
We propose two new boundary integral equation formulas for the biharmonic equation with the Dirichlet boundary data that arises from plate bending problems in ℝ2. Two boundary conditions, u and ∂u/∂n, usually yield a 2 × 2 non-symmetric matrix system of integral equations. Our new formulas yield scalar integral equations that can be handled more efficiently for theoretical and numerical purposes. In this paper we supply complete ellipticity and solvability analyses of our new formulas. Numerical experiments for simple Galerkin methods are also provided.
引用
收藏
页码:97 / 115
页数:18
相关论文
共 7 条
  • [1] Hsiao G.C.(1981)The Aubin-Nitsche lemma for integral equations J. Integral Equations 3 299-315
  • [2] Wendland W.L.(1994)An indirect boundary integral equation method for the biharmonic equation SIAM J. Numer. Anal 31 461-476
  • [3] Jeon Y.(1987)Some boundary element methods using Dirac's distributions as trial functions SIAM J. Numer. Anal. 24 816-827
  • [4] Routsalainen K.(1988)On integral equations of the first kind with logarithmic kernels J. Integral Equations Appl. 1 517-548
  • [5] Saranen J.(undefined)undefined undefined undefined undefined-undefined
  • [6] Yan Y.(undefined)undefined undefined undefined undefined-undefined
  • [7] Sloan I.H.(undefined)undefined undefined undefined undefined-undefined