On the Wavelet Transform for Boehmians

被引:0
|
作者
Abhishek Singh
Aparna Rawat
Shubha Singh
P. K. Banerji
机构
[1] Banasthali Vidhyapith,Department of Mathematics and Statistics
[2] SOP,Department of Mathematics
[3] Hyderabad University,undefined
[4] JNV University,undefined
来源
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences | 2022年 / 92卷
关键词
Wavelet transform; Fourier transform; Distribution spaces; Boehmians; Fourier convolution; Wavelet convolution;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the wavelet transform for Boehmians is investigated by applying the theory of wavelet convolution associated with Fourier convolution. Operational properties are also discussed.
引用
收藏
页码:331 / 336
页数:5
相关论文
共 50 条
  • [21] Some Characterizations of Wavelet Transform
    Abhishek Singh
    National Academy Science Letters, 2021, 44 : 143 - 145
  • [22] Hartley transform for tempered Boehmians
    Loonker, Deshna
    Banerji, P. K.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2011, 81A : 23 - 28
  • [23] Kontorovich-Lebedev transform for Boehmians
    Banerji, P. K.
    Loonker, Deshna
    Kalla, S. L.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2009, 20 (12) : 905 - 913
  • [24] RIDGELET TRANSFORM ON SQUARE INTEGRABLE BOEHMIANS
    Roopkumar, Rajakumar
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (05) : 835 - 844
  • [25] Mellin transform on compactly supported Boehmians
    Gonzalez, B. J.
    Negrin, E. R.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2024,
  • [26] Offset Linear Canonical Stockwell Transform for Boehmians
    Kaur, Navneet
    Gupta, Bivek
    Verma, Amit K.
    Agarwal, Ravi P.
    MATHEMATICS, 2024, 12 (15)
  • [27] ON CONVOLUTION FOR WAVELET TRANSFORM
    Pathak, R. S.
    Pathak, Ashish
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2008, 6 (05) : 739 - 747
  • [28] Some general properties of a fractional Sumudu transform in the class of Boehmians
    Al-Omari, Shrideh K. Qasem
    Agarwal, Praveen
    KUWAIT JOURNAL OF SCIENCE, 2016, 43 (02) : 16 - 30
  • [29] EXCHANGE FORMULA FOR GENERALIZED LAMBERT TRANSFORM AND ITS EXTENSION TO BOEHMIANS
    Roopkumar, R.
    Negrin, E. R.
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 2 (02): : 34 - 41
  • [30] Boehmians and pseudoquotients
    Mikusinski, Piotr
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2011, 5 (02): : 192 - 204