On the Wavelet Transform for Boehmians

被引:0
作者
Abhishek Singh
Aparna Rawat
Shubha Singh
P. K. Banerji
机构
[1] Banasthali Vidhyapith,Department of Mathematics and Statistics
[2] SOP,Department of Mathematics
[3] Hyderabad University,undefined
[4] JNV University,undefined
来源
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences | 2022年 / 92卷
关键词
Wavelet transform; Fourier transform; Distribution spaces; Boehmians; Fourier convolution; Wavelet convolution;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the wavelet transform for Boehmians is investigated by applying the theory of wavelet convolution associated with Fourier convolution. Operational properties are also discussed.
引用
收藏
页码:331 / 336
页数:5
相关论文
共 22 条
[1]  
Pathak RS(2016)Wavelet transform of generalized functions in Proc Math Sci 126 213-226
[2]  
Singh A(2016) spaces Integral Trans Spec Funct 27 468-483
[3]  
Pathak RS(2017)Mexican hat wavelet transform of distributions Rendiconti del Seminario Matematico della Universita di Padova 137 211-222
[4]  
Singh A(2019)Wavelet Transform of Beurling–Bjorck type Ultradistributions Appl Anal 98 1324-1332
[5]  
Pathak RS(2014)Paley–Wiener–Schwartz theorem for the wavelet transform Invest Math Sci 4 95-111
[6]  
Singh A(1981)The wavelet convolution product Comptes Rendus de l’Acadmie des Sciences Paris Ser I Math 293 463-464
[7]  
Pathak RS(1973)Quotients de suites et leurs applications dans lanalyse fonctionnelle Trans Am Math Soc 176 319-334
[8]  
Singh A(1983)The support of Mikusiński operators Jpn J Math 9 159-179
[9]  
Pathak RS(2010)Convergence of Boehmains Integr Trans Spec Funct 21 503-513
[10]  
Mikusiński J(2010)-asymptotic properties of Boehmians Integr Transf Spec Funct 21 479-486