A priori estimates for solutions to a class of obstacle problems under p, q-growth conditions

被引:0
作者
Chiara Gavioli
机构
[1] Università degli Studi di Modena e Reggio Emilia,Dipartimento di Scienze Fisiche, Informatiche e Matematiche
来源
Journal of Elliptic and Parabolic Equations | 2019年 / 5卷
关键词
Variational inequalities; Obstacle problems; Higher differentiability; Non-standard growth; 35J87; 49J40; 47J20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we would like to complement the results contained in Gavioli (Forum Math, to appear) by dealing with the higher differentiability of integer order of solutions to a class of obstacle problems under non-standard growth conditions, fulfilling variational inequalities of the kind ∫Ω⟨A(x,Du),D(φ-u)⟩dx≥0∀φ∈Kψ(Ω).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \int _{\varOmega } \langle {\mathcal {A}}(x, Du), D(\varphi - u) \rangle \, dx \ge 0 \qquad \forall \, \varphi \in {\mathcal {K}}_{\psi }(\varOmega ). \end{aligned}$$\end{document}Here the operator A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} satisfies p, q-growth conditions with p and q related by 1qp<1+1n-1r,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{q}{p} < 1 + \frac{1}{n} - \frac{1}{r}\,, \end{aligned}$$\end{document}being r>n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r>n$$\end{document}. More precisely the function ψ∈W1,p(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi \in W^{1,p}(\varOmega )$$\end{document}, called obstacle, is such that Dψ∈Wloc1,r(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D\psi \in W^{1,r}_{\mathrm{loc}}(\varOmega )$$\end{document} and Kψ={w∈W1,p(Ω):w≥ψa.e. inΩ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {K}}_{\psi }=\{w \in W^{1,p}(\varOmega ): w \ge \psi \,\, \text {a.e. in }\varOmega \}$$\end{document} is the class of admissible functions. The main difference with the previous work (Gavioli in Forum Math, to appear) is that here we assume the same regularity both for the gradient of the obstacle Dψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D\psi$$\end{document} and for the partial map x↦A(x,ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\mapsto {\mathcal {A}}(x,\xi )$$\end{document}, that is, a higher differentiability of Sobolev order in the space W1,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,r}$$\end{document} with the same r>n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r>n$$\end{document} appearing in (1). For the sake of clarity, we focus on the derivation of the a priori estimates since the approximation procedure is standard and can be found in Cupini et al. (Nonlinear Anal 154:7–24, 2017), Cupini et al. (Differ Equ 265(9):4375–4416, 2018), Cupini et al. (Nonlinear Anal 54(4):591–616, 2003), Eleuteri et al. Ann Mat Pura Appl (195(5):1575–1603, 2016) and Gavioli (Forum Math, to appear).
引用
收藏
页码:325 / 347
页数:22
相关论文
共 59 条
  • [1] Baisón AL(2017)Fractional differentiability for solutions of nonlinear elliptic equations Potential Anal. 46 403-430
  • [2] Clop A(2013)Parabolic systems with p, q-growth: a variational approach Arch. Ration. Mech. Anal. 210 219-267
  • [3] Giova R(2014)Existence of evolutionary variational solutions via the calculus of variations J. Differ. Equ. 256 3912-3942
  • [4] Orobitg J(2015)A time dependent variational approach to image restoration SIAM J. Imaging Sci. 8 968-1006
  • [5] Passarelli di Napoli A(2011)Higher differentiability of minimizers of convex variational integrals Ann. Inst. H. Poincaré Anal. Non Linéaire 28 395-411
  • [6] Bögelein V(2019)Besov regularity for solutions of Adv. Nonlinear Anal. 8 395-411
  • [7] Duzaar F(2015)-harmonic equations Arch. Ration. Mech. Anal. 215 443-496
  • [8] Marcellini P(2015)Regularity for double phase variational problems Arch. Ration. Mech. Anal. 218 219-273
  • [9] Bögelein V(2017)Bounded minimisers of double phase variational integrals Nonlinear Anal. 154 7-24
  • [10] Duzaar F(2018)Higher integrability for minimizers of asymptotically convex integrals with discontinuous coefficients J. Differ. Equ. 265 4375-4416