On zeros and growth of solutions of complex difference equations

被引:0
作者
Min-Feng Chen
Ning Cui
机构
[1] Guangdong University of Foreign Studies,School of Mathematics and Statistics
[2] Zhengzhou University of Light Industry,College of Mathematics and Information Science
来源
Advances in Difference Equations | / 2021卷
关键词
Difference equations; Growth; Zeros; Meromorphic solution; 39B32; 39A10; 30D35;
D O I
暂无
中图分类号
学科分类号
摘要
Let f be an entire function of finite order, let n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\geq 1$\end{document}, m≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m\geq 1$\end{document}, L(z,f)≢0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L(z,f)\not \equiv 0$\end{document} be a linear difference polynomial of f with small meromorphic coefficients, and Pd(z,f)≢0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P_{d}(z,f)\not \equiv 0$\end{document} be a difference polynomial in f of degree d≤n−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d\leq n-1$\end{document} with small meromorphic coefficients. We consider the growth and zeros of fn(z)Lm(z,f)+Pd(z,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f^{n}(z)L^{m}(z,f)+P_{d}(z,f)$\end{document}. And some counterexamples are given to show that Theorem 3.1 proved by I. Laine (J. Math. Anal. Appl. 469:808–826, 2019) is not valid. In addition, we study meromorphic solutions to the difference equation of type fn(z)+Pd(z,f)=p1eα1z+p2eα2z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f^{n}(z)+P_{d}(z,f)=p_{1}e^{\alpha _{1}z}+p_{2}e^{\alpha _{2}z}$\end{document}, where n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\geq 2$\end{document}, Pd(z,f)≢0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P_{d}(z,f)\not \equiv 0$\end{document} is a difference polynomial in f of degree d≤n−2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d\leq n-2$\end{document} with small mromorphic coefficients, pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{i}$\end{document}, αi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha _{i}$\end{document} (i=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i=1,2$\end{document}) are nonzero constants such that α1≠α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha _{1}\neq \alpha _{2}$\end{document}. Our results are improvements and complements of Laine 2019, Latreuch 2017, Liu and Mao 2018.
引用
收藏
相关论文
共 50 条
  • [21] GROWTH OF MEROMORPHIC SOLUTIONS OF SOME DIFFERENCE EQUATIONS
    Zheng, Xiu-Min
    Chen, Zong-Xuan
    Tu, Jin
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2010, 4 (02) : 309 - 321
  • [22] On the growth of solutions of difference equations in ultrametric fields
    Bourourou, S.
    Boutabaa, A.
    Zerzaihi, T.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2016, 27 (01): : 112 - 123
  • [23] THE GROWTH OF THE SOLUTIONS OF CERTAIN TYPE OF DIFFERENCE EQUATIONS
    Qi, Xiaoguang
    Liu, Yong
    Yang, Lianzhong
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (03): : 793 - 801
  • [24] On Growth of Meromorphic Solutions for Linear Difference Equations
    Chen, Zong-Xuan
    Shon, Kwang Ho
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [25] Growth of meromorphic solutions of linear difference equations
    Zheng, Xiu-Min
    Tu, Jin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 384 (02) : 349 - 356
  • [26] Meromorphic Solutions of Some Complex Non-Linear Difference Equations
    X.-G. Qi
    L.-Z. Yang
    Analysis Mathematica, 2021, 47 : 405 - 419
  • [27] The properties of the meromorphic solutions of some difference equations
    Huang, Zhi-Bo
    Chen, Zong-Xuan
    Li, Qian
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (07) : 1023 - 1036
  • [28] ESTIMATES OF N-FUNCTION AND m-FUNCTION OF MEROMORPHIC SOLUTIONS OF SYSTEMS OF COMPLEX DIFFERENCE EQUATIONS
    Gao Lingyun
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (04) : 1495 - 1502
  • [29] The Growth of Difference Equations and Differential Equations
    Chen, Zongxuan
    Zhang, Ranran
    Lan, Shuangting
    Chen, Chuangxin
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (06) : 1911 - 1920
  • [30] Growth and poles of meromorphic solutions of some difference equations
    Wang, Jun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (01) : 367 - 377