Deep learning model with multi-feature fusion and label association for suicide detection

被引:0
作者
Zepeng Li
Wenchuan Cheng
Jiawei Zhou
Zhengyi An
Bin Hu
机构
[1] Lanzhou University,Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering
来源
Multimedia Systems | 2023年 / 29卷
关键词
Social media; Suicide ideation detection; Multi-feature fusion; Label association; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
Suicide can cause serious harm to individuals, families, and society, and it has become a global social problem. Personal suicide ideation is concealed, and it is difficult to be accurately identified with traditional methods such as questionnaires and clinical diagnosis. With the development of the Internet, people are increasingly inclined to express their suicidal ideation on social media, where we can identify individuals with suicidal ideation. In this paper, we construct a Chinese social media suicide detection dataset, and extract the dictionary information of the posts, the user’s post time and social information. Then, we fuse the above features with deep learning methods, combine with our proposed label association mechanism, and raise a Text Convolutional Neural Network with Multi-Feature and Label Association (TCNN-MF-LA) model. Experiments show that the proposed model performs better than previous models. We also select some users in the dataset and analyze their posts to further clarify the effectiveness of the model. This work could help to enhance the identification of highest risk population groups and to avoid potentially preventable suicides.
引用
收藏
页码:2193 / 2203
页数:10
相关论文
共 50 条
  • [21] Research on Radar Target Classification Algorithm Based on Multi-feature Fusion and Deep Learning
    Zhang, Chengxin
    Wang, Ao
    Zhang, Yijin
    Zhang, Weibin
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 1186 - 1191
  • [22] Multi-Feature Fusion for Enhancing Image Similarity Learning
    Lu, Jian
    Ma, Cheng-Xian
    Zhou, Yan-Ran
    Luo, Mao-Xin
    Zhang, Kai-Bing
    IEEE ACCESS, 2019, 7 : 167547 - 167556
  • [23] A coupling model of multi-feature fusion and multi-machine learning model integration for defect recognition
    Tu, FengMiao
    Wei, MingHui
    Liu, Jun
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2023, 568
  • [24] An evolutional deep learning method based on multi-feature fusion for fault diagnosis in sucker rod pumping system
    Li, Juanni
    Shao, Jun
    Wang, Wei
    Xie, Wenhao
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 66 : 343 - 355
  • [25] Public Opinion Early Warning Agent Model: A Deep Learning Cascade Virality Prediction Model Based on Multi-Feature Fusion
    Gao, Liqun
    Liu, Yujia
    Zhuang, Hongwu
    Wang, Haiyang
    Zhou, Bin
    Li, Aiping
    FRONTIERS IN NEUROROBOTICS, 2021, 15
  • [26] Multi-feature Deep Learning for Face Gender Recognition
    Jiang, Yuxin
    Li, Songbin
    Liu, Peng
    Dai, Qiongxing
    2014 IEEE 7TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC), 2014, : 507 - 511
  • [27] Automatic cucumber recognition algorithm for harvesting robots in the natural environment using deep learning and multi-feature fusion
    Mao, Shihan
    Li, Yuhua
    Ma, You
    Zhang, Baohua
    Zhou, Jun
    Wang, Kai
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 170
  • [28] Deep learning-based sentiment classification of evaluative text based on Multi-feature fusion
    Abdi, Asad
    Shamsuddin, Siti Mariyam
    Hasan, Shafaatunnur
    Piran, Jalil
    INFORMATION PROCESSING & MANAGEMENT, 2019, 56 (04) : 1245 - 1259
  • [29] Knowledge tracing based on multi-feature fusion
    Yongkang Xiao
    Rong Xiao
    Ning Huang
    Yixin Hu
    Huan Li
    Bo Sun
    Neural Computing and Applications, 2023, 35 : 1819 - 1833
  • [30] Crops Fine Classification in Airborne Hyperspectral Imagery Based on Multi-Feature Fusion and Deep Learning
    Wei, Lifei
    Wang, Kun
    Lu, Qikai
    Liang, Yajing
    Li, Haibo
    Wang, Zhengxiang
    Wang, Run
    Cao, Liqin
    REMOTE SENSING, 2021, 13 (15)