Deep learning model with multi-feature fusion and label association for suicide detection

被引:0
|
作者
Zepeng Li
Wenchuan Cheng
Jiawei Zhou
Zhengyi An
Bin Hu
机构
[1] Lanzhou University,Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering
来源
Multimedia Systems | 2023年 / 29卷
关键词
Social media; Suicide ideation detection; Multi-feature fusion; Label association; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
Suicide can cause serious harm to individuals, families, and society, and it has become a global social problem. Personal suicide ideation is concealed, and it is difficult to be accurately identified with traditional methods such as questionnaires and clinical diagnosis. With the development of the Internet, people are increasingly inclined to express their suicidal ideation on social media, where we can identify individuals with suicidal ideation. In this paper, we construct a Chinese social media suicide detection dataset, and extract the dictionary information of the posts, the user’s post time and social information. Then, we fuse the above features with deep learning methods, combine with our proposed label association mechanism, and raise a Text Convolutional Neural Network with Multi-Feature and Label Association (TCNN-MF-LA) model. Experiments show that the proposed model performs better than previous models. We also select some users in the dataset and analyze their posts to further clarify the effectiveness of the model. This work could help to enhance the identification of highest risk population groups and to avoid potentially preventable suicides.
引用
收藏
页码:2193 / 2203
页数:10
相关论文
共 50 条
  • [1] Deep learning model with multi-feature fusion and label association for suicide detection
    Li, Zepeng
    Cheng, Wenchuan
    Zhou, Jiawei
    An, Zhengyi
    Hu, Bin
    MULTIMEDIA SYSTEMS, 2023, 29 (04) : 2193 - 2203
  • [2] Enhanced deep transfer learning with multi-feature fusion for lung disease detection
    Vidyasri, S.
    Saravanan, S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023,
  • [3] Enhanced deep transfer learning with multi-feature fusion for lung disease detection
    Vidyasri, S.
    Saravanan, S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (19) : 56321 - 56345
  • [4] MDFULog: Multi-Feature Deep Fusion of Unstable Log Anomaly Detection Model
    Li, Min
    Sun, Mengjie
    Li, Gang
    Han, Delong
    Zhou, Mingle
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [5] A Lung Image Deep Learning Detection Model Based on Cross Residual Attention and Multi-feature Fusion
    Gou, Haosong
    Tang, Fanjie Zhao Mingwei
    Zhang, Gaoyi
    Zhao, Mingfeng
    INFORMATION TECHNOLOGY AND CONTROL, 2024, 53 (03):
  • [6] A Multi-Feature Fusion Using Deep Transfer Learning for Earthquake Building Damage Detection
    Abdi, Ghasem
    Jabari, Shabnam
    CANADIAN JOURNAL OF REMOTE SENSING, 2021, 47 (02) : 337 - 352
  • [7] Multi-feature fusion deep networks
    Ma, Gang
    Yang, Xi
    Zhang, Bo
    Shi, Zhongzhi
    NEUROCOMPUTING, 2016, 218 : 164 - 171
  • [8] A Multi-feature Fusion-based Deep Learning for Insulator Image Identification and Fault Detection
    Huang, Xinlei
    Shang, Erbo
    Xue, Jiande
    Ding, Hongwen
    Li, Panpan
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 1957 - 1960
  • [9] Research on Railway Dispatcher Fatigue Detection Method Based on Deep Learning with Multi-Feature Fusion
    Chen, Liang
    Zheng, Wei
    ELECTRONICS, 2023, 12 (10)
  • [10] Seal Recognition and Application Based on Multi-feature Fusion Deep Learning
    Zhang Z.
    Xia S.
    Liu Z.
    Data Analysis and Knowledge Discovery, 2024, 8 (03) : 143 - 155