An intrinsic flat limit of Riemannian manifolds with no geodesics

被引:0
|
作者
J. Basilio
D. Kazaras
C. Sormani
机构
[1] CUNY Graduate Center,Lehman College
[2] Simons Center for Geometry and Physics,undefined
[3] CUNY Graduate Center,undefined
来源
Geometriae Dedicata | 2020年 / 204卷
关键词
53C23;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we produce a sequence of Riemannian manifolds Mjm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_j^m$$\end{document}, m≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 2$$\end{document}, which converge in the intrinsic flat sense to the unit m-sphere with the restricted Euclidean distance. This limit space has no geodesics achieving the distances between points, exhibiting previously unknown behavior of intrinsic flat limits. In contrast, any compact Gromov–Hausdorff limit of a sequence of Riemannian manifolds is a geodesic space. Moreover, if m≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 3$$\end{document}, the manifolds Mjm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_j^m$$\end{document} may be chosen to have positive scalar curvature.
引用
收藏
页码:265 / 284
页数:19
相关论文
共 50 条