Rigid toric matrix Schubert varieties

被引:0
作者
Irem Portakal
机构
[1] Technical University of Munich,Department of Mathematics
来源
Journal of Algebraic Combinatorics | 2023年 / 57卷
关键词
Matrix Schubert variety; Toric variety; Bipartite graph; Rothe diagram; Deformation; 14B07; 14M15; 14M25; 52B20; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Fulton proves that the matrix Schubert variety Xπ¯≅Yπ×Cq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{X_{\pi }} \cong Y_{\pi } \times \mathbb {C}^q$$\end{document} can be defined via certain rank conditions encoded in the Rothe diagram of π∈SN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi \in S_N$$\end{document}. In the case where Yπ:=TV(σπ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_{\pi }:={{\,\textrm{TV}\,}}(\sigma _{\pi })$$\end{document} is toric (with respect to a (C∗)2N-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathbb {C}^*)^{2N-1}$$\end{document} action), we show that it can be described as a toric (edge) ideal of a bipartite graph Gπ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G^{\pi }$$\end{document}. We characterize the lower dimensional faces of the associated so-called edge cone σπ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{\pi }$$\end{document} explicitly in terms of subgraphs of Gπ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G^{\pi }$$\end{document} and present a combinatorial study for the first-order deformations of Yπ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_{\pi }$$\end{document}. We prove that Yπ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_{\pi }$$\end{document} is rigid if and only if the three-dimensional faces of σπ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{\pi }$$\end{document} are all simplicial. Moreover, we reformulate this result in terms of the Rothe diagram of π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}.
引用
收藏
页码:1265 / 1283
页数:18
相关论文
共 16 条
[1]  
Altmann K(2006)Polyhedral divisors and algebraic torus actions Math. Ann. 334 557-607
[2]  
Hausen J(2016)Toric matrix Schubert varieties and their polytopes Proc. Amer. Math. Soc. 144 5081-5096
[3]  
Escobar L(1992)Flags, Schubert polynomials, degeneracy loci, and determinantal formulas Duke Math. J. 65 381-420
[4]  
Mészáros K(1964)Deformationen von singularitäten komplexer räume Math. Ann. 153 236-260
[5]  
Fulton W(1979)Representations of Coxeter groups and Hecke algebras Invent. Math. 53 165-184
[6]  
Grauert H(2005)Gröbner geometry of Schubert polynomials Ann. Math. 161 1245-1318
[7]  
Kerner H(1999)Toric ideals generated by quadratic binomials J. Algebra 218 509-527
[8]  
Kazhdan D(2021)On rigidity of toric varieties arising from bipartite graphs J. Algebra 569 784-822
[9]  
Lusztig G(2006)Explicit representations by halfspaces of the edge cone of a graph Int. J. Contemp. Math. Sci. 1 53-66
[10]  
Knutson A(undefined)undefined undefined undefined undefined-undefined