\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ N = \frac{1}{2} $\end{document} deformations of chiral superspaces from new quantum Poincaré and Euclidean superalgebras

被引:0
作者
A. Borowiec
J. Lukierski
M. Mozrzymas
V. N. Tolstoy
机构
[1] University of Wroclaw,Institute for Theoretical Physics
[2] Lomonosov Moscow State University,Skobeltsyn Institute of Nuclear Physics
关键词
Supersymmetry Breaking; Quantum Groups; Superspaces; Non-Commutative Geometry;
D O I
10.1007/JHEP06(2012)154
中图分类号
学科分类号
摘要
We present a large class of supersymmetric classical r-matrices, describing the supertwist deformations of Poincaré and Euclidean superalgebras. We consider in detail new family of four supertwists of N = 1 Poincaré superalgebra and provide as well their Euclidean counterpart. The proposed supertwists are better adjusted to the description of deformed D = 4 Euclidean supersymmetries with independent left-chiral and right-chiral supercharges. They lead to new quantum superspaces, obtained by the superextension of twist deformations of spacetime providing Lie-algebraic noncommutativity of space-time coordinates. In the Hopf-algebraic Euclidean SUSY framework the considered supertwist deformations provide an alternative to the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ N = \frac{1}{2} $\end{document} SUSY Seiberg’s star product deformation scheme.
引用
收藏
相关论文
共 96 条
[1]  
Doplicher S(1994)Space-time quantization induced by classical gravity Phys. Lett. B 331 39-undefined
[2]  
Fredenhagen K(1995)The quantum structure of space-time at the Planck scale and quantum fields Commun. Math. Phys. 172 187-undefined
[3]  
Roberts JE(1996)Divergencies in a field theory on quantum space Phys. Lett. B 376 53-undefined
[4]  
Doplicher S(2003)Noncommutative superspace, N = 1/2 supersymmetry, field theory and string theory JHEP 06 010-undefined
[5]  
Fredenhagen K(2004)Nilpotent deformations of N = 2 superspace JHEP 02 012-undefined
[6]  
Roberts JE(2004)Non-anticommutative N = 2 super Yang-Mills theory with singlet deformation Phys. Lett. B 579 226-undefined
[7]  
Filk T(2006)Construction of the effective action in nonanticommutative supersymmetric field theories Phys. Lett. B 633 389-undefined
[8]  
Seiberg N(2005)Generic chiral superfield model on nonanticommutative N = 1/2 superspace Mod. Phys. Lett. A 20 1423-undefined
[9]  
Ivanov E(2000)Untwisting noncommutative R Nucl. Phys. B 581 559-undefined
[10]  
Lechtenfeld O(2003) and the equivalence of quantum field theories J. Math. Phys. 44 4736-undefined